Citation: LIU Wen-Han, YUAN Rong-Hui, TENG Yuan-Jie, MA Chun-An. Electrochemical SERS of Self-Assembled Monolayer of Thiosalicylic Acid Adsorbed on Activated ld Electrodes[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2599-2607. doi: 10.3866/PKU.WHXB201310231 shu

Electrochemical SERS of Self-Assembled Monolayer of Thiosalicylic Acid Adsorbed on Activated ld Electrodes

  • Received Date: 29 July 2013
    Available Online: 23 October 2013

    Fund Project: 国家自然科学基金(10804099) (10804099) 浙江省科技厅公益项目(2012C37014) (2012C37014)浙江省重点科技创新团队(2011R09002-12)资助 (2011R09002-12)

  • Amonolayer film of thiosalicylic acid (TSA) adsorbed on activated ld electrodes was investigated by using in situ electrochemical surface-enhanced Raman scattering (EC-SERS). In the SERS spectra of selfassembled monolayers in solutions with different pH values, two peaks with Raman intensities that decreased with increasing pH were observed. The optimum EC-SERS signals were obtained at 0.7 V and 70 s, and it was found that the intensities became weaker, and the peaks eventually disappeared, when the potential was negatively shifted. This showed that the alignments of TSA assembled on the ld surface changed in response to changes in the external conditions. The absorption mechanism of the TSA monolayer was investigated by calculating the distribution fraction of TSA at different pH values and the enhancement factor (EF) at different potentials, using a combination of SERS and EC-SERS. As a result of different electrochemical absorption orientations of TSA and its reduction/desorption behavior at high negative potentials, the Raman enhanced effect of TSA on ld was significantly reduced and the SERS activity was irreversibly lost.

  • 加载中
    1. [1]

      (1) Titus, E. J.;Weber, M. L.; Stranahan, S. M.;Willets, K. A. Nano Lett. 2012, 12 (10), 5103. doi: 10.1021/nl3017779

    2. [2]

      (2) Su, Q. Q.; Ma, X. Y.; Dong, J.; Jiang, C. Y.; Qian,W. P. ACS Appl. Mater. Interfaces 2011, 3 (6), 1873. doi: 10.1021/am200057f

    3. [3]

      (3) Freye, C. E.; Crane, N. A.; Kirchner, T. B.; Sepaniak, M. J.Anal. Chem. 2013, 85(8), 3991. doi: 10.1021/ac303710q

    4. [4]

      (4) Wang, Y. Q.; Yan, B.; Chen, L. X. Chem. Rev. 2013, 113 (3),1391. doi: 10.1021/cr300120g

    5. [5]

      (5) Chu, H.; Yang, H. F.; Huan, S. Y.; Shen, G. L.; Yu, R. Q. J. Phys. Chem. B 2006, 110 (11), 5490. doi: 10.1021/jp053914m

    6. [6]

      (6) Kho, K.W.; Dinish, U. S.; Kumar, A.; Olivo, M. ACS Nano2012, 6 (6), 4892. doi: 10.1021/nn300352b

    7. [7]

      (7) Monnell, J. D.; Stapleton, J. J.; Dirk, S. M.; Reinerth,W. A.;Tour, J. M.; Allara, D. L.;Weiss, P. S. J. Phys. Chem. B 2005,109 (43), 20343. doi: 10.1021/jp044186q

    8. [8]

      (8) Sumner, J. J.; Creager, S. E. J. Phys. Chem. B 2001, 105 (37),8739. doi: 10.1021/jp011229j

    9. [9]

      (9) Napper, A. M.; Liu, H. Y.;Waldeck, D. H. J. Phys. Chem. B2001, 105 (32), 7699. doi: 10.1021/jp0105140

    10. [10]

      (10) Bertin, P. A.; Ahrens, M. J.; Bhavsar, K.; Georganopoulou, D.;Wunder, M.; Blackburn, G. F.; Meade, T. Org. Lett. 2010, 12 (15), 3372. doi: 10.1021/ol101180r

    11. [11]

      (11) Ameer, F. S.; Hu,W. F.; Ansar, S. M.; Siriwardana, K.; Collier,W. E.; Zou, S. L.; Zhang, D. M. J. Phys. Chem. C 2013, 117 (7),3484.

    12. [12]

      (12) Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C.J. Am. Chem. Soc. 2009, 131 (38), 13806. doi: 10.1021/ja905134d

    13. [13]

      (13) Xie,W.;Walkenfort, B.; Schlu cker, S. J. Am. Chem. Soc. 2013,135 (5), 1657. doi: 10.1021/ja309074a

    14. [14]

      (14) Yang, Y. C.; Xia, Y.; Huang,W.; Zheng, J. F.; Li, Z. L. J. Solid State Electrochem. 2012, 16 (4), 1733. doi: 10.1007/s10008-011-1600-8

    15. [15]

      (15) Ohta, N.; Yagi, I. J. Phys. Chem. C 2008, 112 (45), 17603. doi: 10.1021/jp806599r

    16. [16]

      (16) Carron, K. T.; Hurley, L. G. J. Phys. Chem. 1991, 95 (24),9979. doi: 10.1021/j100177a068

    17. [17]

      (17) Ke, Y. K.; Dong, H. R. Handbook of Analytical Chemistry: Spectrial Analysis; Chemical Industry Press: Beijing, 1998; pp1153-1160. [柯以侃, 董慧茹. 分析化学手册: 光谱分析. 北京: 化学工业出版社, 1998: 1153-1160.]

    18. [18]

      (18) Schalnat, M. C.; Pemberton, J. E. Langmuir 2010, 26 (14),11862. doi: 10.1021/la1010314

    19. [19]

      (19) Dean, J. A. Lange's Handbook of Chemistry; Science Press:Beijing, 1991; p 59; translated by Shang, J. F., Cao, S. J., Xin,W. M. [Dean, J. A. 兰氏化学手册. 尚久方, 操时杰, 辛无名,译. 北京: 科学出版社, 1991: 59.]

    20. [20]

      (20) Gao, X. P.; Davies, J. P.;Weaver, M. J. J. Phys. Chem. 1990, 94 (17), 6858. doi: 10.1021/j100380a059

    21. [21]

      (21) Moskovits, M.; Suh, J. S. J. Phys. Chem. 1988, 92 (22),6327. doi: 10.1021/j100333a030

    22. [22]

      (22) Kolega, R. R.; Schlenoff, J. B. Langmuir 1998, 14 (19),5469. doi: 10.1021/la980553b

    23. [23]

      (23) Ji,W.; Kitahama, Y.; Han, X. X.; Xue, X. X.; Ozaki, Y.; Zhao,B. J. Phys. Chem. C 2012, 116 (46), 24829. doi: 10.1021/jp308805n

    24. [24]

      (24) Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; VanDuyne, R. P. J. Am. Chem. Soc. 2003, 125 (2), 588. doi: 10.1021/ja028255v

    25. [25]

      (25) Amaya, R. O.; Rappoport, D.; Munoz, P. A.; Peng, P.; Mazur, E.;Guzik, A. A. J. Phys. Chem. C 2012, 116 (29), 15568. doi: 10.1021/jp302597v

    26. [26]

      (26) Le-Ru, E. C.; Blackie, E.; Meyer, M.; Etche in, P. G. J. Phys. Chem. C 2007, 111 (37), 13794. doi: 10.1021/jp0687908

    27. [27]

      (27) Jia, H. Y. Synthesis, Characterization of SERS ActiveNanoparticles. Ph. D. Dissertation, Jilin University, Changchun,2006. [贾慧颖. 银纳米粒子的制备、表征及其表面增强拉曼散射活性研究[D]. 长春: 吉林大学, 2006.]

    28. [28]

      (28) Stolberg, L.; Lipkowski, J.; Irish, D. E. J. Electroanal. Chem.1990, 296, 171. doi: 10.1016/0022-0728(90)87241-B

    29. [29]

      (29) Trasatti, S.; Petrii, O. A. Pure & Appl. Chem. 1991, 63 (5),711. doi: 10.1351/pac199163050711

    30. [30]

      (30) Cai,W. B.; Ren, B.; Li, X. Q.; She, C. X.; Liu, F. M.; Cai, X.W.; Tian, Z. Q. Surf. Sci. 1998, 406, 9.

    31. [31]

      (31) Álvarez-Puebla, R. A. J. Phys. Chem. Lett. 2012, 3 (7), 857.doi: 10.1021/jz201625j


  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    12. [12]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    13. [13]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    14. [14]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(661)
  • Abstract views(877)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return