Citation: HUANG Xian-Dan, LI Li, WEI Qiu-Ying, ZHANG Wen-Zhi, LU Lu. Preparation of Three-Dimensionally Ordered Macroporous Composite Bi2O3/TiO2 and Its Photocatalytic Degradation of Crystal Violet under Multiple Modes[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2615-2623. doi: 10.3866/PKU.WHXB201310221 shu

Preparation of Three-Dimensionally Ordered Macroporous Composite Bi2O3/TiO2 and Its Photocatalytic Degradation of Crystal Violet under Multiple Modes

  • Received Date: 16 July 2013
    Available Online: 22 October 2013

    Fund Project: 国家自然科学基金(21376126) (21376126) 黑龙江省自然科学基金(B201106) (B201106) 黑龙江省教育厅科学技术研究项目(12511592) (12511592) 黑龙江省政府博士后资助经费(LBH-Z11108) (LBH-Z11108)黑龙江省普通高校绿色化工技术重点实验室开放课题(2013 年)资助 (2013 年)

  • Polystyrene latex (PS) spheres and EO20PO70O20 (P123) were used as dual template agents, with TiO2 as the matrix, to prepare a three-dimensionally ordered macroporous (3DOM) composite Bi2O3/TiO2, using a sol-gel method and post-processing calcination. The phase structures, chemical composition, morphology, and surface physicochemical properties were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), ultraviolet-visible diffuse reflectance (UV-Vis DRS) and X-ray photoelectron spectroscopies (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), and N2 adsorption-desorption measurements. The results show that the composite is well crystallized and has a highly ordered porous structure with mesoporous walls; it is a 3DOM material. The light absorption of 3DOM-Bi2O3/TiO2 is red-shifted by about 60 nm to the visible region compared with TiO2. In the photocatalytic degradation of crystal violet using various methods, namely ultraviolet, visible-light, and microwave-assisted irradiation, the activity of 3DOM-Bi2O3/TiO2 is significantly higher than those of P25, Bi2O3, and Bi2O3/TiO2. The 3DOM-Bi2O3/TiO2 composite also shows od photocatalytic activity in the degradations of various dyes under ultraviolet irradiation. The 3DOM-Bi2O3/TiO2 activity is well retained after three cycles.

  • 加载中
    1. [1]

      (1) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.;Zhang,W. K. Acta Phys. -Chim. Sin. 2013, 29 (2), 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报,2013, 29 (2), 403.] doi: 10.3866/PKU.WHXB201211022

    2. [2]

      (2) Cao, X. X.; Chen, Y. L.; Lin, B. Z.; Gao, B. F. J. Inorg. Mater.2012, 27 (12), 1302. [操小鑫, 陈亦琳, 林碧洲, 高碧芬. 无机材料学报, 2012, 27 (12), 1302.]

    3. [3]

      (3) Qiu,W.; Ren, C. J.; ng, M. C.; Hou, Y. Z.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2011, 27 (6), 1487. [仇伟, 任成军, 龚茂初, 侯云泽, 陈耀强. 物理化学学报, 2011, 27 (6), 1487.] doi: 10.3866/PKU.WHXB20110621

    4. [4]

      (4) Zhai, X. H.; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. - Chim. Sin. 2010, 26 (3), 663. [翟晓辉, 龙绘锦, 董江舟, 曹亚安. 物理化学学报, 2010, 26 (3), 663.] doi: 10.3866/PKU.WHXB20100317

    5. [5]

      (5) Li, A. C.; Li, G. H.; Zheng, Y.; Ma, L. L.; Zhen, Y. J. Acta Phys. -Chim. Sin. 2012, 28 (2), 458. [李爱昌, 李桂花, 郑琰, 马玲玲, 郑彦俊. 物理化学学报, 2012, 28 (2), 458.] doi: 10.3866/PKU.WHXB201112081

    6. [6]

      (6) Zou,W.; Hao,W. C.; Xin, X.;Wang, T. M. Chin. J. Inorg. Chem. 2009, 25 (11), 1971. [邹文, 郝伟昌, 信心, 王天民. 无机化学学报, 2009, 25 (11), 1971.]

    7. [7]

      (7) Ma, Z. Y.; Yao, B. H.; He, Y. Q.; Bai, H. N.; Gao, Y. H. J. Funct. Mater. 2013, 4 (44), 507. [马占营, 姚秉华, 何抑清, 白海妮,高奕红. 功能材料, 2013, 4 (44), 507.]

    8. [8]

      (8) Bessekhouad, Y.; Robert, D.;Weber, J. Y. Catal. Today 2005,101 (4), 315.

    9. [9]

      (9) Song, L. M.; Zhang, S. J.;Wu, X. Q.;Wei, Q.W. J. Am. Chem. Soc. 2012, 51 (13), 4922.

    10. [10]

      (10) Ghule, L. A.; Shirke, B. S.; Sapnar, K. B.; Dhole, S. D.;Hankare, P. P.; Garadkar, K. M. J. Mater. Sci.: Mater. Electron.2011, 22 (8), 1120. doi: 10.1007/s10854-010-0270-0

    11. [11]

      (11) Cho, S.; Jang, J.W.; Jung, S. H.; Lee, B. R.; Oh, E.; Lee, K. H.Langmuir 2009, 25 (6), 3825. doi: 10.1021/la804009g

    12. [12]

      (12) Wan, L. S.; Lv, J.; Ke, B. B.; Xu, Z. K. J. Am. Chem. Soc. 2010,2 (12), 3759.

    13. [13]

      (13) Velev, O. D.; Kaler, E.W. Adv. Mater. 2000, 12 (7), 531.

    14. [14]

      (14) Klein, S. M.; Manoharan, V. N.; Pine, D. J. Langmuir 2005, 21 (15), 6669. doi: 10.1021/la0469957

    15. [15]

      (15) Manoharan, V. N.; Imhof, A.; Thorne, J. D. Adv. Mater. 2001, 13 (6), 447.

    16. [16]

      (16) Li, L.; Zhao, Y. H.; Li, E. S.; Z, N.; Ma, H. Y.; Liu, B. Chem. J. Chin. Univ. 2011, 32 (6), 1323. [李莉, 赵月红, 李恩帅,禚娜, 马慧媛, 刘波. 高等学校化学学报, 2011, 32 (6),1323.]

    17. [17]

      (17) Li, L.; Zhao, Y. H.; Lu, L.; Ma, H. Y.; Liu, B. Chin. J. Inorg. Chem. 2012, 28 (6), 1131. [李莉, 赵月红, 路露, 马慧媛,刘波. 无机化学学报, 2012, 28 (6), 1131.]

    18. [18]

      (18) Deng, Z.W.; Chen, M.; Zhou, S. X.; You, B.;W, L. M.Langmuir 2006, 22 (14), 6403. doi: 10.1021/la060944n

    19. [19]

      (19) Ma, T. Y.; Zhang, X. J.; Shao, G. S.; Cao, J. L.; Yuan, Z. Y. J. Phys. Chem. C 2008, 112 (8), 3090. doi: 10.1021/jp710636x

    20. [20]

      (20) Shim, S. E.; Cha, Y. J.; Byun, J. M.; Choe, S. J. Appl. Polym. Sci. 1999, 71 (13), 2259.

    21. [21]

      (21) Li, L.; Zhang, X. F.; Ma, Y.; Zhang,W. Z.; Guo, Y. X. CIESC Journal 2008, 59 (12), 3067. [李莉, 张秀芬, 马禹, 张文治, 郭一荇. 化工学报, 2008, 59 (12), 3067.]

    22. [22]

      (22) Yang, J. C.; Michael, J. J.; Jimmy,W. M. Polymer 2002, 43 (19),5125. doi: 10.1016/S0032-3861(02)00390-7

    23. [23]

      (23) Fang, J. F.; Xuan, Y. M.; Li, Q. Sci. China Technol. Sci. 2010,53 (11), 3088. doi: 10.1007/s11431-010-4110-5

    24. [24]

      (24) Demirors, A. F.; Eser, B. E.; Omer, D. Langmuir 2005, 21 (9),4156. doi: 10.1021/la047136l

    25. [25]

      (25) Shi, J. Y.; Chen, J.; Feng, Z. C.; Chen, T.; Lian, Y. X.;Wang, X.L.; Li, C. J. Phys. Chem. C 2007, 111 (2), 693. doi: 10.1021/jp065744z

    26. [26]

      (26) Wang, T.; Jiang, X.;Wu, Y. X. Ind. Eng. Chem. Res. 2009, 48 (13), 6224. doi: 10.1021/ie801974y

    27. [27]

      (27) Vu, D.; Li, X.; Li, Z. Y.;Wang, C. J. Chem. Eng. Data 2013, 58 (1), 71. doi: 10.1021/je301017q

    28. [28]

      (28) Bian, Z. F.; Zhu, J.;Wang, S. H. J. Phys. Chem . C 2008, 112 (16), 6258.

    29. [29]

      (29) Wang, C. M.; Sun, Z. Y.; Ma, L. Y.; Su, M. Simultaneous Anal. Chem. 2011, 83 (6), 2217.

    30. [30]

      (30) Abdallah,W. A.; Taylor, S. D. J. Phys. Chem. C 2008, 112 (48),18963.

    31. [31]

      (31) Harison, P. G.; Lloy, N. C.; Darill,W. J. Phys. Chem. B 1998,102 (52), 10672. doi: 10.1021/jp9822135

    32. [32]

      (32) Kang, S. H.; Kim, J. Y.; Kim, Y. K. J. Phys. Chem. C 2007, 111 (26), 9614. doi: 10.1021/jp071504n

    33. [33]

      (33) Vaidya, R.; Simonson, R J.; Dimos, D. Langmuir 1996, 12(11)2830. doi: 10.1021/la951072k

    34. [34]

      (34) Srinivasan, M.; White, T. Environ. Sci. Technol. 2007, 41 (12),4405. doi: 10.1021/es070160b

    35. [35]

      (35) Sun,W.; Zhou, S. X.; You, B.;Wu, L. M. Chem. Mater. 2012,24 (19), 3800. doi: 10.1021/cm302464g

    36. [36]

      (36) Harish, K. N.; Naik, B.; Prashanth Kumar, P. N.; Viswanath, R.ACS Sustainable Chem. Eng. 2013, 1 (9), 1143. doi: 10.1021/sc400060z

    37. [37]

      (37) Chen, Z. X.; Li, D. Z.; Zhang,W. J.; Shao, Y.; Chen, T.W.; Sun,M.; Fu, X. Z. J. Phys. Chem. C 2009, 113 (11), 4433. doi: 10.1021/jp8092513

    38. [38]

      (38) Yang, X. F.; Cui, H.Y.; Li, Y.; Qin, J. L.; Zhang, R. X.; Tang, H.ACS Catal. 2013, 3 (3), 363. doi: 10.1021/cs3008126

    39. [39]

      (39) Li, L.; Ji, Y.; Lu, D.; Zhao, Y. H. Chem. Online 2010, 6 (73),645. [李莉, 计远, 陆丹, 赵月红. 化学通报, 2010, 6 (73), 645.]

    40. [40]

      (40) Chen, H. Z.; Yang, S. G.; Y, K.; J, Y. M.; Sun, C. J. Phys. Chem. A 2011, 115 (14), 3034. doi: 10.1021/jp109948n

    41. [41]

      (41) Fan, H. M.; Li, H. Y.; Liu, B. K.; Lu, Y. C.; Xie, T. F.;Wang, D.J. Appl. Mater. Interfaces 2012, 4 (9), 4853. doi: 10.1021/am301199v

    42. [42]

      (42) Sarkar, D.; Ghosh, C. K.; Mukherjee, S.; Chattopadhyay, K. K.Appl. Mater. Interfaces 2013, 5 (2), 331. doi: 10.1021/am302136y

    43. [43]

      (43) Georgekutty, R.; Seery, M. K.; Pillai, S. C. J. Phys. Chem. C2008, 112 (35), 13563. doi: 10.1021/jp802729a

    44. [44]

      (44) Kim, S.; Park, H.; Choi,W. J. Phys. Chem. B 2004, 108 (20),6402.

    45. [45]

      (45) Chen, C. C.;Wang, Q.; Lei, P. X.; Song,W. J.; Ma,W. H.; Zhao,J. C. Environ. Sci. Technol. 2006, 40 (12), 3965. doi: 10.1021/jp049789g


  • 加载中
    1. [1]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    2. [2]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(945)
  • Abstract views(925)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return