Citation: WANG Fang, SHENG Shen-Jun, GUO Ge-Pu, MA Qing-Yu. Thermal Stability and Dynamic Thermal Mechanical Properties of Microcellular Polylactic Acid Scaffolds[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2505-2512. doi: 10.3866/PKU.WHXB201310213 shu

Thermal Stability and Dynamic Thermal Mechanical Properties of Microcellular Polylactic Acid Scaffolds

  • Received Date: 14 August 2013
    Available Online: 21 October 2013

    Fund Project: 国家自然科学基金(11274176) (11274176) 江苏省教育厅自然科学基金(09KJD350001) (09KJD350001)南京市开放实验室基金(1640703064)资助项目 (1640703064)

  • Solvent-free solid-state foaming technology was used to fabricate microcellular polylactic acid (PLA) scaffold materials with cell sizes from 350 to 20 μm at saturation pressures of 2.5, 3.5, 4.0, and 5.0 MPa in carbon dioxide. The corresponding thermodynamic parameters were measured, including the decomposition temperature and rate, storage/loss modulus, and loss factor, using thermogravimetric analysis, dynamic thermal mechanical analysis, and scanning electron microscopy. The Kissinger, Ozawa-Doyle, and Vyazovkin equations were used to calculate the thermal decomposition kinetics for PLA foams of different cell sizes; their lifetimes in nitrogen were also obtained. It was observed that PLA foams with larger cell sizes, lower average activation energies, and better flexibilities could be fabricated at lower saturation pressures, resulting in reduced decomposition times.

  • 加载中
    1. [1]

      (1) Temenoff, J. S.; Mikos, A. G. Biomaterials 2000, 21, 431. doi: 10.1016/S0142-9612(99)00213-6

    2. [2]

      (2) Nam, Y. S.; Park, T. G. Biomaterials 1999, 20, 1783. doi: 10.1016/S0142-9612(99)00073-3

    3. [3]

      (3) Kothapalli, C. R.; Shaw, M. T.;Wei, M. Acta Biomater 2005, 1,653. doi: 10.1016/j.actbio.2005.06.005

    4. [4]

      (4) Huang, Z. H.; Dong, Y. S.; Lin, P. H. Acta Phys. -Chim. Sin.2009, 25, 1285. [黄志海, 董寅生, 林萍华. 物理化学学报,2009, 25, 1285.] doi: 10.3866/PKU.WHXB20090708

    5. [5]

      (5) Yang, Y. F.; Tang, G.W.; Zhao, Y. H.; Zhang, Y.; Li, X. L.;Yuan, X. Y. Chin. Sci. Bull. 2011, 56, 982. doi: 10.1007/s11434-010-4132-1

    6. [6]

      (6) Ristic, I. S.; Tanasic, L.; Nikolic, L. B.; Cakic, S. M.; Ilic, O. Z.;Radicevic, R. Z.; Budinski-Simendic, J. K. J. Polym. Environ.2011, 19 (2), 362. doi: 10.1007/s10924-011-0285-5

    7. [7]

      (7) Kim, K.W.; Lee, B. H.; Kim, H. J.; Sriroth, K.; Dorgan, J. R.J. Therm. Anal. Calorim. 2012, 108, 1131. doi: 10.1007/s10973-011-1350-y

    8. [8]

      (8) Chrissafis, K.; Pavlidou, E.; Paraskevopoulos, K. S.; Beslikas,T.; Nianias, N.; Bikiaris, D. J. Therm. Anal. Calorim. 2011, 105,313. doi: 10.1007/s10973-010-1168-z

    9. [9]

      (9) Fernandez, J.; Meaurio, E.; Chaos, A.; Etxeberria, A.; Alonso-Varona, A.; Sarasua, J. R. Polymer 2013, 54 (11), 2621. doi: 10.1016/j.polymer.2013.03.009

    10. [10]

      (10) Li, Y. J.; Chen,W.; Li, L. Y. Acta Phys. -Chim. Sin. 2011, 27,1751. [李佑稷, 陈伟, 李雷勇. 物理化学学报, 2011, 27,1751.] doi: 10.3866/PKU.WHXB20110701

    11. [11]

      (11) Sultana, N. Springer Briefs in Applied Sciences and Technology2013, No. 2, 19.

    12. [12]

      (12) Zhang, J.; Yin, H. M.; Chen, C.; Hsiao, B. S.; Yuan, G. P.; Li, Z.M. J. Mater. Sci. 2013, 48, 7374. doi: 10.1007/s10853-013-7552-x

    13. [13]

      (13) Zeng, C.; Zhang, N.W.; Feng, S. Q.; Ren, J. J. Therm. Anal. Calorim. 2013, 111, 633. doi: 10.1007/s10973-012-2542-9

    14. [14]

      (14) Blanco, I.; Siracusa, V. J. Therm. Anal. Calorim. 2013, 112,1171. doi: 10.1007/s10973-012-2535-8

    15. [15]

      (15) Singh, L.; Kumar, V.; Ratner, B. D. Biomaterials 2004, 25,2611. doi: 10.1016/j.biomaterials.2003.09.040

    16. [16]

      (16) Guo, S. Z. Scanning Electron Microscope Technology and Its Applications; Xiamen University Press: Xiamen, 2006; pp 41-48. [郭素枝. 扫描电镜技术及其应用. 厦门: 厦门大学出版社, 2006: 41-48.]

    17. [17]

      (17) Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Biomaterials 1995, 16,305. doi: 10.1016/0142-9612(95)93258-F

    18. [18]

      (18) Zou, H. T.; Yi, C. H.;Wang, L. X.; Liu, H. T.; Xu,W. L.J. Therm. Anal. Calorim. 2009, 97, 929. doi: 10.1007/s10973-009-0121-5

    19. [19]

      (19) Wang, S. X.; Zhao, Z.; Tan, Z. C.; Li, Y. S.; Tong, B.; Shi, Q.;Li, Y. Acta Phys. -Chim. Sin. 2007, 23, 1459. [王韶旭, 赵哲, 谭志诚, 李彦生, 童波, 史全, 李英. 物理化学学报,2007, 23, 1459.] doi: 10.3866/PKU.WHXB20070929

    20. [20]

      (20) Chen, F. X.; Zhou, C. R.; Li, G. P. J. Therm. Anal. Calorim.2012, 109, 1457. doi: 10.1007/s10973-011-1834-9

    21. [21]

      (21) Wang, Y. B.; Huang, Z. X.; Zhang, L. M. Sci. Technol. Overseas. Build. Mater. 2004, 25, 25.

    22. [22]

      (22) Wendlandt,W.W. M. Thermal Analysis, 3rd ed.;Wiley: NewYork, 1985; pp 1165-1173.

    23. [23]

      (23) Guo, M. L. Dynamic Mechanical Thermal Analysis for Polymer and Composite Materials; Chemical Industry Press: Beijing,2002; pp 92-103. [过梅丽. 高聚物与复合材料的动态力学热分析. 北京: 化学工业出版社, 2002: 92-103.]

    24. [24]

      (24) Baldwin, D. F.; Park, C. B.; Suh, N. P. Polym. Eng. Sci. 1996,36, 1437.

    25. [25]

      (25) Kalaee, M.; Akhlaghi, S.; Mazinani, S.; Sharif, A.; Jarestani, Y.C.; Mortezaei, M. J. Therm. Anal. Calorim. 2012, 110,1407. doi: 10.1007/s10973-011-2097-1

    26. [26]

      (26) McNeill, I. C.; Leiper, H. A. Polym. Degrad. Stab. 1985, 11,267. doi: 10.1016/0141-3910(85)90050-3

    27. [27]

      (27) Leiper, H. A.; McNeill, I. C. Polym. Degrad. Stab. 1985, 11,309. doi: 10.1016/0141-3910(85)90035-7

    28. [28]

      (28) Kissinger, H. E. Anal. Chem. 1969, 41, 2060. doi: 10.1021/ac50159a046

    29. [29]

      (29) Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881. doi: 10.1246/bcsj.38.1881

    30. [30]

      (30) Vyazovkin, S.; Dranca, I. Thermochim. Acta 2006, 446, 140.doi: 10.1016/j.tca.2006.04.017

    31. [31]

      (31) Vilar, J. M. G.; Rubi, J. M. Phys. Rev. Lett. 2008, 100,020601. doi: 10.1103/PhysRevLett.100.020601

    32. [32]

      (32) Toop, D. T. IEEE Transition on Electrical Insulation 1971, 6 (1), 2.

    33. [33]

      (33) Chen, Y. X.; Lu, C. T.; Lei, D. L.; Zhou, S. X.; Xiong, C. D.J. Fourth. Mil. Med. Univ. 2000, 21, 417.

    34. [34]

      (34) Vasenius, J.; Vainionpaa, S.; Vihtonen, K.; Makela, A.;Rokkanen, P. Biomaterials 1990, 11, 501. doi: 10.1016/0142-9612(90)90065-X

    35. [35]

      (35) Lu, L.; Garcia, C. A.; Mikos, A. G. J. Biomed. Mater. Res. 1999,46, 236.


  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    7. [7]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

Metrics
  • PDF Downloads(602)
  • Abstract views(738)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return