Citation: WANG Fang, SHENG Shen-Jun, GUO Ge-Pu, MA Qing-Yu. Thermal Stability and Dynamic Thermal Mechanical Properties of Microcellular Polylactic Acid Scaffolds[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2505-2512. doi: 10.3866/PKU.WHXB201310213
-
Solvent-free solid-state foaming technology was used to fabricate microcellular polylactic acid (PLA) scaffold materials with cell sizes from 350 to 20 μm at saturation pressures of 2.5, 3.5, 4.0, and 5.0 MPa in carbon dioxide. The corresponding thermodynamic parameters were measured, including the decomposition temperature and rate, storage/loss modulus, and loss factor, using thermogravimetric analysis, dynamic thermal mechanical analysis, and scanning electron microscopy. The Kissinger, Ozawa-Doyle, and Vyazovkin equations were used to calculate the thermal decomposition kinetics for PLA foams of different cell sizes; their lifetimes in nitrogen were also obtained. It was observed that PLA foams with larger cell sizes, lower average activation energies, and better flexibilities could be fabricated at lower saturation pressures, resulting in reduced decomposition times.
-
-
[1]
(1) Temenoff, J. S.; Mikos, A. G. Biomaterials 2000, 21, 431. doi: 10.1016/S0142-9612(99)00213-6
-
[2]
(2) Nam, Y. S.; Park, T. G. Biomaterials 1999, 20, 1783. doi: 10.1016/S0142-9612(99)00073-3
-
[3]
(3) Kothapalli, C. R.; Shaw, M. T.;Wei, M. Acta Biomater 2005, 1,653. doi: 10.1016/j.actbio.2005.06.005
-
[4]
(4) Huang, Z. H.; Dong, Y. S.; Lin, P. H. Acta Phys. -Chim. Sin.2009, 25, 1285. [黄志海, 董寅生, 林萍华. 物理化学学报,2009, 25, 1285.] doi: 10.3866/PKU.WHXB20090708
-
[5]
(5) Yang, Y. F.; Tang, G.W.; Zhao, Y. H.; Zhang, Y.; Li, X. L.;Yuan, X. Y. Chin. Sci. Bull. 2011, 56, 982. doi: 10.1007/s11434-010-4132-1
-
[6]
(6) Ristic, I. S.; Tanasic, L.; Nikolic, L. B.; Cakic, S. M.; Ilic, O. Z.;Radicevic, R. Z.; Budinski-Simendic, J. K. J. Polym. Environ.2011, 19 (2), 362. doi: 10.1007/s10924-011-0285-5
-
[7]
(7) Kim, K.W.; Lee, B. H.; Kim, H. J.; Sriroth, K.; Dorgan, J. R.J. Therm. Anal. Calorim. 2012, 108, 1131. doi: 10.1007/s10973-011-1350-y
-
[8]
(8) Chrissafis, K.; Pavlidou, E.; Paraskevopoulos, K. S.; Beslikas,T.; Nianias, N.; Bikiaris, D. J. Therm. Anal. Calorim. 2011, 105,313. doi: 10.1007/s10973-010-1168-z
-
[9]
(9) Fernandez, J.; Meaurio, E.; Chaos, A.; Etxeberria, A.; Alonso-Varona, A.; Sarasua, J. R. Polymer 2013, 54 (11), 2621. doi: 10.1016/j.polymer.2013.03.009
-
[10]
(10) Li, Y. J.; Chen,W.; Li, L. Y. Acta Phys. -Chim. Sin. 2011, 27,1751. [李佑稷, 陈伟, 李雷勇. 物理化学学报, 2011, 27,1751.] doi: 10.3866/PKU.WHXB20110701
-
[11]
(11) Sultana, N. Springer Briefs in Applied Sciences and Technology2013, No. 2, 19.
-
[12]
(12) Zhang, J.; Yin, H. M.; Chen, C.; Hsiao, B. S.; Yuan, G. P.; Li, Z.M. J. Mater. Sci. 2013, 48, 7374. doi: 10.1007/s10853-013-7552-x
-
[13]
(13) Zeng, C.; Zhang, N.W.; Feng, S. Q.; Ren, J. J. Therm. Anal. Calorim. 2013, 111, 633. doi: 10.1007/s10973-012-2542-9
-
[14]
(14) Blanco, I.; Siracusa, V. J. Therm. Anal. Calorim. 2013, 112,1171. doi: 10.1007/s10973-012-2535-8
-
[15]
(15) Singh, L.; Kumar, V.; Ratner, B. D. Biomaterials 2004, 25,2611. doi: 10.1016/j.biomaterials.2003.09.040
-
[16]
(16) Guo, S. Z. Scanning Electron Microscope Technology and Its Applications; Xiamen University Press: Xiamen, 2006; pp 41-48. [郭素枝. 扫描电镜技术及其应用. 厦门: 厦门大学出版社, 2006: 41-48.]
-
[17]
(17) Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Biomaterials 1995, 16,305. doi: 10.1016/0142-9612(95)93258-F
-
[18]
(18) Zou, H. T.; Yi, C. H.;Wang, L. X.; Liu, H. T.; Xu,W. L.J. Therm. Anal. Calorim. 2009, 97, 929. doi: 10.1007/s10973-009-0121-5
-
[19]
(19) Wang, S. X.; Zhao, Z.; Tan, Z. C.; Li, Y. S.; Tong, B.; Shi, Q.;Li, Y. Acta Phys. -Chim. Sin. 2007, 23, 1459. [王韶旭, 赵哲, 谭志诚, 李彦生, 童波, 史全, 李英. 物理化学学报,2007, 23, 1459.] doi: 10.3866/PKU.WHXB20070929
-
[20]
(20) Chen, F. X.; Zhou, C. R.; Li, G. P. J. Therm. Anal. Calorim.2012, 109, 1457. doi: 10.1007/s10973-011-1834-9
-
[21]
(21) Wang, Y. B.; Huang, Z. X.; Zhang, L. M. Sci. Technol. Overseas. Build. Mater. 2004, 25, 25.
-
[22]
(22) Wendlandt,W.W. M. Thermal Analysis, 3rd ed.;Wiley: NewYork, 1985; pp 1165-1173.
-
[23]
(23) Guo, M. L. Dynamic Mechanical Thermal Analysis for Polymer and Composite Materials; Chemical Industry Press: Beijing,2002; pp 92-103. [过梅丽. 高聚物与复合材料的动态力学热分析. 北京: 化学工业出版社, 2002: 92-103.]
-
[24]
(24) Baldwin, D. F.; Park, C. B.; Suh, N. P. Polym. Eng. Sci. 1996,36, 1437.
-
[25]
(25) Kalaee, M.; Akhlaghi, S.; Mazinani, S.; Sharif, A.; Jarestani, Y.C.; Mortezaei, M. J. Therm. Anal. Calorim. 2012, 110,1407. doi: 10.1007/s10973-011-2097-1
-
[26]
(26) McNeill, I. C.; Leiper, H. A. Polym. Degrad. Stab. 1985, 11,267. doi: 10.1016/0141-3910(85)90050-3
-
[27]
(27) Leiper, H. A.; McNeill, I. C. Polym. Degrad. Stab. 1985, 11,309. doi: 10.1016/0141-3910(85)90035-7
-
[28]
(28) Kissinger, H. E. Anal. Chem. 1969, 41, 2060. doi: 10.1021/ac50159a046
-
[29]
(29) Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881. doi: 10.1246/bcsj.38.1881
-
[30]
(30) Vyazovkin, S.; Dranca, I. Thermochim. Acta 2006, 446, 140.doi: 10.1016/j.tca.2006.04.017
-
[31]
(31) Vilar, J. M. G.; Rubi, J. M. Phys. Rev. Lett. 2008, 100,020601. doi: 10.1103/PhysRevLett.100.020601
-
[32]
(32) Toop, D. T. IEEE Transition on Electrical Insulation 1971, 6 (1), 2.
-
[33]
(33) Chen, Y. X.; Lu, C. T.; Lei, D. L.; Zhou, S. X.; Xiong, C. D.J. Fourth. Mil. Med. Univ. 2000, 21, 417.
-
[34]
(34) Vasenius, J.; Vainionpaa, S.; Vihtonen, K.; Makela, A.;Rokkanen, P. Biomaterials 1990, 11, 501. doi: 10.1016/0142-9612(90)90065-X
-
[35]
(35) Lu, L.; Garcia, C. A.; Mikos, A. G. J. Biomed. Mater. Res. 1999,46, 236.
-
[1]
-
-
[1]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[2]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[3]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[4]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[5]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[6]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[7]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[8]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[9]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[10]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[11]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[12]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[13]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[15]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[16]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[17]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[18]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[19]
Zhening Lou , Quanxing Mao , Xiaogeng Feng , Lei Zhang , Xu Xu , Yuyang Zhang , Xueyan Liu , Hongling Kang , Dongyang Feng , Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089
-
[20]
Yan Zhang , Ping Wang , Tiebo Xiao , Futing Zi , Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017
-
[1]
Metrics
- PDF Downloads(602)
- Abstract views(676)
- HTML views(1)