Citation: PANG Bin, XIE Mao-Zhao, JIA Ming, LIU Yao-Dong. Improved Phenomenological Soot Model for Multicomponent Fuel Based on Variations in PAH Characteristics with Fuel Type[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2523-2533. doi: 10.3866/PKU.WHXB201310161 shu

Improved Phenomenological Soot Model for Multicomponent Fuel Based on Variations in PAH Characteristics with Fuel Type

  • Received Date: 11 July 2013
    Available Online: 16 October 2013

    Fund Project: 国家自然科学基金(51176020, 51176021) (51176020, 51176021)美国通用汽车全球研发中心(GM024705-NV584)资助项目 (GM024705-NV584)

  • Integration of a skeletal polycyclic aromatic hydrocarbon (PAH) model with a toluene reference fuel (TRF) oxidation model was used to develop a skeletal TRF-PAH model. A phenomenological soot model, coupled with the new TRF-PAH model, was modified based on the experimental observation that fuels with different molecular structures produce PAHs and soot in different ways. The new TRF-PAH model was validated against experimental data for the relevant PAHs for the oxidation/pyrolysis of toluene in a jet-stirred reactor, flow reactor, and shock tube. The results show that the PAH model can reproduce the experimental data for the major species concentrations. The predicted benzene concentration in the oxidation of alkanes and aromatic hydrocarbons indicates that the molecular structure of the fuel significantly affects the PAH formation pathway. The improved soot model was validated against measured soot yields from the pyrolysis of toluene, toluene/n-heptane mixtures, and toluene/isooctane mixtures in a shock tube, as well as toluene oxidation. The results show that the predicted soot yields obtained using the new soot model are in reasonable agreement with the experimental data over a wide operating range. Finally, the soot model was used to predict the soot emissions from a diesel engine fueled with TRF20. The results indicate that the TRF-PAH combustion model and the new soot model can reproduce the combustion and emission characteristics well.

  • 加载中
    1. [1]

      (1) Ra, Y.; Reitz, R. D. Combust. Flame 2008, 155 (4), 713. doi: 10.1016/j.combustflame.2008.05.002

    2. [2]

      (2) Ra, Y.; Reitz, R. D. Combust. Flame 2011, 158 (1), 69. doi: 10.1016/j.combustflame.2010.07.019

    3. [3]

      (3) Andrae, J. C.; Björnbom, P.; Cracknell, R.; Kalghatgi, G.Combust. Flame 2007, 149 (1), 2.

    4. [4]

      (4) Mehl, M.; Pitz,W. J.;Westbrook, C. K.; Curran, H. J. Proc. Combust. Inst. 2011, 33 (1), 193.

    5. [5]

      (5) Machrafi, H.; Cavadias, S. Combust. Flame 2008, 155 (4),557. doi: 10.1016/j.combustflame.2008.04.022

    6. [6]

      (6) Zheng, D.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28 (9),2029. [郑东, 钟北京. 物理化学学报, 2012, 28 (9), 2029.]doi: 10.3866/PKU.WHXB201207042

    7. [7]

      (7) Alexiou, A.;Williams, A. Fuel 1995, 74 (2), 153. doi: 10.1016/0016-2361(95)92648-P

    8. [8]

      (8) Agafonov, G.; Naydenova, I.; Vlasov, P.;Warnatz, J. Proc. Combust. Inst. 2007, 31 (1), 575. doi: 10.1016/j.proci.2006.07.191

    9. [9]

      (9) Choi, B. C.; Choi, S. K.; Chung, S. H. Proc. Combust. Inst.2011, 33 (1), 609. doi: 10.1016/j.proci.2010.06.067

    10. [10]

      (10) Song, J. O.; Song, C. L.; Tao, Y.; Lv, G.; Dong, S. R. Combust. Flame 2011, 158 (3), 446. doi: 10.1016/j.combustflame.2010.09.017

    11. [11]

      (11) Chen,W. M.; Shuai, S. J.;Wang, J. X. Fuel 2009, 88 (10),1927. doi: 10.1016/j.fuel.2009.03.039

    12. [12]

      (12) Agafonov, G.; Smirnov, V.; Vlasov, P. Proc. Combust. Inst.2011, 33 (1), 625. doi: 10.1016/j.proci.2010.07.089

    13. [13]

      (13) Blacha, T.; Di Domenico, M.; Gerlinger, P.; Aigner, M.Combust. Flame 2012, 159 (1), 181. doi: 10.1016/j.combustflame.2011.07.006

    14. [14]

      (14) Tao, F.; lovitchev, V. I.; Chomiak, J. Combust. Flame 2004,136 (3), 270. doi: 10.1016/j.combustflame.2003.11.001

    15. [15]

      (15) Tao, F.; Foster, D. E.; Reitz, R. D. SAE Tech. Pap. Ser. 2006,2006-01-0196.

    16. [16]

      (16) Vishwanathan, G.; Reitz, R. D. SAE Tech. Pap. Ser. 2008, 2008-01-1331.

    17. [17]

      (17) Jia, M.; Peng, Z. J.; Xie, M. Z. Proc. Inst. Mech. Eng. Part: D J. Automob. Eng. 2009, 223 (3), 395. doi: 10.1243/09544070JAUTO993

    18. [18]

      (18) Kaminaga, T.; Kusaka, J.; Ishii, Y. Int. J. Engine. Rer. 2008, 9 (4), 283. doi: 10.1243/14680874JER00908

    19. [19]

      (19) Vishwanathan, G. Development and Application of a PracticalSoot Modeling Approach for Low Temperature DieselCombustion. Ph. D. Dissertation, The University ofWisconsin:Madison, 2012.

    20. [20]

      (20) Wang, F.; Zheng, Z.; He, Z. Energy & Fuels 2012, 26 (3), 1612.doi: 10.1021/ef201937k

    21. [21]

      (21) Zheng, D.; Zhang, Y. P.; Zhong, B. J. Acta Phys. -Chim. Sin.2013, 29 (6), 1154. [郑东, 张云鹏, 钟北京. 物理化学学报,2013, 29 (6), 1154.] doi: 10.3866/PKU.WHXB201303201

    22. [22]

      (22) Wang, H.; Reitz, R. D.; Yao, M.; Yang, B.; Jiao, Q.; Qiu, L.Combust. Flame 2012, 163 (3), 504.

    23. [23]

      (23) Reitz, R. D.;Wang, H.; Jiao, Q.; Yao, M.; Yang, B.; Qiu, L. Int. J. Engine. Rer. 2013, 14 (5), 434. doi: 10.1177/1468087412471056

    24. [24]

      (24) Liu, Y. D.; Jia, M.; Xie, M. Z.; Pang, B. Energy & Fuels 2013,27 (8), 4899. doi: 10.1021/ef4009955

    25. [25]

      (25) Pang, B.; Xie, M. Z.; Jia, M.; Liu, Y. D. Energy Fuels 2013, 27 (3), 1699. doi: 10.1021/ef400033f

    26. [26]

      (26) Pang, K. M.; Ng, H. K.; Gan, S. Fuel 2011, 90 (9), 2902. doi: 10.1016/j.fuel.2011.04.027

    27. [27]

      (27) Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc. Combust. Inst. 2009, 32 (1), 165. doi: 10.1016/j.proci.2008.05.004

    28. [28]

      (28) Davis, S.;Wang, H.; Breinsky, K.; Law, C. Symposium (International) on Combustion 1996, 26 (1), 1025.

    29. [29]

      (29) Klotz, S. D.; Brezinsky, K.; Glassman, I. Symposium (International) on Combustion 1998, 27 (1), 337.

    30. [30]

      (30) Dagaut, P.; Pengloan, G.; Ristori, A. Phys. Chem. Chem. Phys.2002, 4 (10), 1846. doi: 10.1039/b110282f

    31. [31]

      (31) Zhang, H. R.; Eddings, E. G.; Sarofim, A. F.;Westbrook, C. K.Proc. Combust. Inst. 2009, 32 (1), 377. doi: 10.1016/j.proci.2008.06.011

    32. [32]

      (32) Colket, M.; Seery, D. Symposium (International) on Combustion1994, 25 (1), 883.

    33. [33]

      (33) Marchal, C.; Delfau, J.; Vovelle, C.; Moreac, G.;Mounaimrousselle, C.; Mauss, F. Proc. Combust. Inst. 2009, 32 (1), 753. doi: 10.1016/j.proci.2008.06.115

    34. [34]

      (34) Raj, A.; Prada, I. D. C.; Amer, A. A.; Chung, S. H. Combust. Flame 2011, 159 (2), 500.

    35. [35]

      (35) Sivaramakrishnan, R.; Tranter, R. S.; Brezinsky, K. J. Phys. Chem. A 2006, 110 (30), 9388. doi: 10.1021/jp060820j

    36. [36]

      (36) Detilleux, V.; Vandooren, J. Proc. Combust. Inst. 2011, 33 (1),217. doi: 10.1016/j.proci.2010.06.151

    37. [37]

      (37) Zhang, H. R.; Eddings, E. G.; Sarofim, A. F. Energy Fuels 2007,21 (2), 677. doi: 10.1021/ef060195h

    38. [38]

      (38) Zhang, H. R.; Eddings, E. G.; Sarofim, A. F. Energy Fuels 2008,22 (2), 945. doi: 10.1021/ef700526n

    39. [39]

      (39) Fenimore, C. P.; Jones, G.W. J. Phys. Chem. 1967, 71 (3), 593.doi: 10.1021/j100862a021

    40. [40]

      (40) Neoh, K.; Howard, J.; Sarofim, A. Symposium (International) on Combustion 1985, 20 (1), 951.

    41. [41]

      (41) Kellerer, H.; Müller, A.; Bauer, H. J.;Wittig, S. Combust. Sci. Technol. 1996, 113 (1), 67. doi: 10.1080/00102209608935488

    42. [42]

      (42) Alexiou, A.;Williams, A. Combust. Flame 1996, 104 (1), 51.

    43. [43]

      (43) Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz,W. J. Proc. Combust. Inst. 2009, 32 (1), 411. doi: 10.1016/j.proci.2008.06.154

    44. [44]

      (44) Andrae, J. C.; Brinck, T.; Kalghatgi, G. Combustion and Flame2008, 155 (4), 696. doi: 10.1016/j.combustflame.2008.05.010

    45. [45]

      (45) Bakali, A.; Delfau, J. L.; Vovelle, C. Combust. Sci. Technol.1998, 140 (1-6), 69. doi: 10.1080/00102209808915768

    46. [46]

      (46) Frenklach, M.; Yuan, T.; Ramachandra, M. Energy Fuels 1988,2 (4), 462. doi: 10.1021/ef00010a013

    47. [47]

      (47) Hippler, H.; Reihs, C.; Troe, J. Symposium (International) on Combustion 1991, 23 (1), 37.

    48. [48]

      (48) Luo, J.; Yao, M. F.; Liu, H. F.; Yang, B. B. Fuel 2012, 97, 621.doi: 10.1016/j.fuel.2012.02.057


  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    19. [19]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(722)
  • Abstract views(780)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return