Citation:
PANG Bin, XIE Mao-Zhao, JIA Ming, LIU Yao-Dong. Improved Phenomenological Soot Model for Multicomponent Fuel Based on Variations in PAH Characteristics with Fuel Type[J]. Acta Physico-Chimica Sinica,
;2013, 29(12): 2523-2533.
doi:
10.3866/PKU.WHXB201310161
-
Integration of a skeletal polycyclic aromatic hydrocarbon (PAH) model with a toluene reference fuel (TRF) oxidation model was used to develop a skeletal TRF-PAH model. A phenomenological soot model, coupled with the new TRF-PAH model, was modified based on the experimental observation that fuels with different molecular structures produce PAHs and soot in different ways. The new TRF-PAH model was validated against experimental data for the relevant PAHs for the oxidation/pyrolysis of toluene in a jet-stirred reactor, flow reactor, and shock tube. The results show that the PAH model can reproduce the experimental data for the major species concentrations. The predicted benzene concentration in the oxidation of alkanes and aromatic hydrocarbons indicates that the molecular structure of the fuel significantly affects the PAH formation pathway. The improved soot model was validated against measured soot yields from the pyrolysis of toluene, toluene/n-heptane mixtures, and toluene/isooctane mixtures in a shock tube, as well as toluene oxidation. The results show that the predicted soot yields obtained using the new soot model are in reasonable agreement with the experimental data over a wide operating range. Finally, the soot model was used to predict the soot emissions from a diesel engine fueled with TRF20. The results indicate that the TRF-PAH combustion model and the new soot model can reproduce the combustion and emission characteristics well.
-
-
-
[1]
(1) Ra, Y.; Reitz, R. D. Combust. Flame 2008, 155 (4), 713. doi: 10.1016/j.combustflame.2008.05.002
-
[2]
(2) Ra, Y.; Reitz, R. D. Combust. Flame 2011, 158 (1), 69. doi: 10.1016/j.combustflame.2010.07.019
-
[3]
(3) Andrae, J. C.; Björnbom, P.; Cracknell, R.; Kalghatgi, G.Combust. Flame 2007, 149 (1), 2.
-
[4]
(4) Mehl, M.; Pitz,W. J.;Westbrook, C. K.; Curran, H. J. Proc. Combust. Inst. 2011, 33 (1), 193.
-
[5]
(5) Machrafi, H.; Cavadias, S. Combust. Flame 2008, 155 (4),557. doi: 10.1016/j.combustflame.2008.04.022
-
[6]
(6) Zheng, D.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28 (9),2029. [郑东, 钟北京. 物理化学学报, 2012, 28 (9), 2029.]doi: 10.3866/PKU.WHXB201207042
-
[7]
(7) Alexiou, A.;Williams, A. Fuel 1995, 74 (2), 153. doi: 10.1016/0016-2361(95)92648-P
-
[8]
(8) Agafonov, G.; Naydenova, I.; Vlasov, P.;Warnatz, J. Proc. Combust. Inst. 2007, 31 (1), 575. doi: 10.1016/j.proci.2006.07.191
-
[9]
(9) Choi, B. C.; Choi, S. K.; Chung, S. H. Proc. Combust. Inst.2011, 33 (1), 609. doi: 10.1016/j.proci.2010.06.067
-
[10]
(10) Song, J. O.; Song, C. L.; Tao, Y.; Lv, G.; Dong, S. R. Combust. Flame 2011, 158 (3), 446. doi: 10.1016/j.combustflame.2010.09.017
-
[11]
(11) Chen,W. M.; Shuai, S. J.;Wang, J. X. Fuel 2009, 88 (10),1927. doi: 10.1016/j.fuel.2009.03.039
-
[12]
(12) Agafonov, G.; Smirnov, V.; Vlasov, P. Proc. Combust. Inst.2011, 33 (1), 625. doi: 10.1016/j.proci.2010.07.089
-
[13]
(13) Blacha, T.; Di Domenico, M.; Gerlinger, P.; Aigner, M.Combust. Flame 2012, 159 (1), 181. doi: 10.1016/j.combustflame.2011.07.006
-
[14]
(14) Tao, F.; lovitchev, V. I.; Chomiak, J. Combust. Flame 2004,136 (3), 270. doi: 10.1016/j.combustflame.2003.11.001
-
[15]
(15) Tao, F.; Foster, D. E.; Reitz, R. D. SAE Tech. Pap. Ser. 2006,2006-01-0196.
-
[16]
(16) Vishwanathan, G.; Reitz, R. D. SAE Tech. Pap. Ser. 2008, 2008-01-1331.
-
[17]
(17) Jia, M.; Peng, Z. J.; Xie, M. Z. Proc. Inst. Mech. Eng. Part: D J. Automob. Eng. 2009, 223 (3), 395. doi: 10.1243/09544070JAUTO993
-
[18]
(18) Kaminaga, T.; Kusaka, J.; Ishii, Y. Int. J. Engine. Rer. 2008, 9 (4), 283. doi: 10.1243/14680874JER00908
-
[19]
(19) Vishwanathan, G. Development and Application of a PracticalSoot Modeling Approach for Low Temperature DieselCombustion. Ph. D. Dissertation, The University ofWisconsin:Madison, 2012.
-
[20]
(20) Wang, F.; Zheng, Z.; He, Z. Energy & Fuels 2012, 26 (3), 1612.doi: 10.1021/ef201937k
-
[21]
(21) Zheng, D.; Zhang, Y. P.; Zhong, B. J. Acta Phys. -Chim. Sin.2013, 29 (6), 1154. [郑东, 张云鹏, 钟北京. 物理化学学报,2013, 29 (6), 1154.] doi: 10.3866/PKU.WHXB201303201
-
[22]
(22) Wang, H.; Reitz, R. D.; Yao, M.; Yang, B.; Jiao, Q.; Qiu, L.Combust. Flame 2012, 163 (3), 504.
-
[23]
(23) Reitz, R. D.;Wang, H.; Jiao, Q.; Yao, M.; Yang, B.; Qiu, L. Int. J. Engine. Rer. 2013, 14 (5), 434. doi: 10.1177/1468087412471056
-
[24]
(24) Liu, Y. D.; Jia, M.; Xie, M. Z.; Pang, B. Energy & Fuels 2013,27 (8), 4899. doi: 10.1021/ef4009955
-
[25]
(25) Pang, B.; Xie, M. Z.; Jia, M.; Liu, Y. D. Energy Fuels 2013, 27 (3), 1699. doi: 10.1021/ef400033f
-
[26]
(26) Pang, K. M.; Ng, H. K.; Gan, S. Fuel 2011, 90 (9), 2902. doi: 10.1016/j.fuel.2011.04.027
-
[27]
(27) Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc. Combust. Inst. 2009, 32 (1), 165. doi: 10.1016/j.proci.2008.05.004
-
[28]
(28) Davis, S.;Wang, H.; Breinsky, K.; Law, C. Symposium (International) on Combustion 1996, 26 (1), 1025.
-
[29]
(29) Klotz, S. D.; Brezinsky, K.; Glassman, I. Symposium (International) on Combustion 1998, 27 (1), 337.
-
[30]
(30) Dagaut, P.; Pengloan, G.; Ristori, A. Phys. Chem. Chem. Phys.2002, 4 (10), 1846. doi: 10.1039/b110282f
-
[31]
(31) Zhang, H. R.; Eddings, E. G.; Sarofim, A. F.;Westbrook, C. K.Proc. Combust. Inst. 2009, 32 (1), 377. doi: 10.1016/j.proci.2008.06.011
-
[32]
(32) Colket, M.; Seery, D. Symposium (International) on Combustion1994, 25 (1), 883.
-
[33]
(33) Marchal, C.; Delfau, J.; Vovelle, C.; Moreac, G.;Mounaimrousselle, C.; Mauss, F. Proc. Combust. Inst. 2009, 32 (1), 753. doi: 10.1016/j.proci.2008.06.115
-
[34]
(34) Raj, A.; Prada, I. D. C.; Amer, A. A.; Chung, S. H. Combust. Flame 2011, 159 (2), 500.
-
[35]
(35) Sivaramakrishnan, R.; Tranter, R. S.; Brezinsky, K. J. Phys. Chem. A 2006, 110 (30), 9388. doi: 10.1021/jp060820j
-
[36]
(36) Detilleux, V.; Vandooren, J. Proc. Combust. Inst. 2011, 33 (1),217. doi: 10.1016/j.proci.2010.06.151
-
[37]
(37) Zhang, H. R.; Eddings, E. G.; Sarofim, A. F. Energy Fuels 2007,21 (2), 677. doi: 10.1021/ef060195h
-
[38]
(38) Zhang, H. R.; Eddings, E. G.; Sarofim, A. F. Energy Fuels 2008,22 (2), 945. doi: 10.1021/ef700526n
-
[39]
(39) Fenimore, C. P.; Jones, G.W. J. Phys. Chem. 1967, 71 (3), 593.doi: 10.1021/j100862a021
-
[40]
(40) Neoh, K.; Howard, J.; Sarofim, A. Symposium (International) on Combustion 1985, 20 (1), 951.
-
[41]
(41) Kellerer, H.; Müller, A.; Bauer, H. J.;Wittig, S. Combust. Sci. Technol. 1996, 113 (1), 67. doi: 10.1080/00102209608935488
-
[42]
(42) Alexiou, A.;Williams, A. Combust. Flame 1996, 104 (1), 51.
-
[43]
(43) Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz,W. J. Proc. Combust. Inst. 2009, 32 (1), 411. doi: 10.1016/j.proci.2008.06.154
-
[44]
(44) Andrae, J. C.; Brinck, T.; Kalghatgi, G. Combustion and Flame2008, 155 (4), 696. doi: 10.1016/j.combustflame.2008.05.010
-
[45]
(45) Bakali, A.; Delfau, J. L.; Vovelle, C. Combust. Sci. Technol.1998, 140 (1-6), 69. doi: 10.1080/00102209808915768
-
[46]
(46) Frenklach, M.; Yuan, T.; Ramachandra, M. Energy Fuels 1988,2 (4), 462. doi: 10.1021/ef00010a013
-
[47]
(47) Hippler, H.; Reihs, C.; Troe, J. Symposium (International) on Combustion 1991, 23 (1), 37.
-
[48]
(48) Luo, J.; Yao, M. F.; Liu, H. F.; Yang, B. B. Fuel 2012, 97, 621.doi: 10.1016/j.fuel.2012.02.057
-
[1]
-
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[4]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[9]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[10]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[11]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[12]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[13]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[14]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[15]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[16]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[17]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[18]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[19]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[20]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[1]
Metrics
- PDF Downloads(722)
- Abstract views(732)
- HTML views(11)