Citation:
	            
		            SHI  Ji-Peng, YANG  Fang-Zu, TIAN  Zhong-Qun, ZHOU  Shao-Min. Electrocrystallization of Cu-Sn Alloy on Copper Electrode Surface[J]. Acta Physico-Chimica Sinica,
							;2013, 29(12): 2579-2584.
						
							doi:
								10.3866/PKU.WHXB201310092
						
					
				
					
				
	        
- 
	                	
The co-deposition and electrocrystallization of Cu-Sn alloy in a weak acidic citrate bath were studied by linear sweep voltammetry (LSV), cyclic voltammetry (CV), and chronoamperometry. The Scharifker- Hill (SH) theory model and Heerman-Tarallo (HT) theory model were applied to analyze the chronoamperometry data. The results show that the Cu-Sn alloy co-deposited on copper electrode, following instantaneous nucleation with three-dimensional (3D) growth under diffusion control. The kinetic parameters were obtained using the HT model. As the step potential shifted from -0.80 to -0.85 V, the nucleation rate constant (A) increased from 20.19 to 177.67 s-1, the density of active nucleation sites (N0) increased from 6.10×105 to 1.42×106 cm-2, and the diffusion coefficient (D) was (6.13±0.62)×10-6 cm2·s-1.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Hoffacker, G.; Kaiser, H.; Reissmueller, K.;Wirth, G. Cyanidic-Alkaline Baths for the Galvanic Deposition of Copper-tin AlloyCoatings, Uses Thereof, and Metallic Bases Coated with SaidCopper-tin Alloy Coating. US Patent: US 5534129, 1996-07-09.
 - 
			
                    [2]
                
			
(2) Correia, A. N.; Façanha, M. X.; de Lima-Neto, P. Surf. Coat. Technol. 2007, 201 (16), 7216.
 - 
			
                    [3]
                
			
(3) Hovestad, A.; Tacken, R. A. Physica Status Solidi (c) 2008, 5 (11), 3506. doi: 10.1002/pssc.v5:11
 - 
			
                    [4]
                
			
(4) Sürme, Y.; Gürten, A. A.; Bayol, E.; Ersoy, E. J. Alloy. Compd.2009, 485 (1), 98.
 - 
			
                    [5]
                
			
(5) Finazzi, G. A.; De Oliveira, E. M.; Carlos, I. A. Surf. Coat. Technol. 2004, 187 (2), 377.
 - 
			
                    [6]
                
			
(6) Low, C. T. J.;Walsh, F. C. Surf. Coat. Technol. 2008, 202 (8),1339. doi: 10.1016/j.surfcoat.2007.06.032
 - 
			
                    [7]
                
			
(7) Scharifker, B.; Hills, G. Electrochim. Acta 1983, 28 (7), 879.doi: 10.1016/0013-4686(83)85163-9
 - 
			
                    [8]
                
			
(8) Palomar-Pardavé, M.; Scharifker, B. R.; Arce, E. M.; Romero-Romo, M. Electrochim. Acta 2005, 50 (24), 4736. doi: 10.1016/j.electacta.2005.03.004
 - 
			
                    [9]
                
			
(9) Ballesteros, J. C.; Chainet, E.; Ozil, P.; Meas, Y.; Trejo, G. Int. J. Electrochem. Sci. 2011, 6, 2632.
 - 
			
                    [10]
                
			
(10) Gu, M.; Zhong, Q. J. Appl. Electrochem. 2011, 41 (7), 765. doi: 10.1007/s10800-011-0293-0
 - 
			
                    [11]
                
			
(11) Rudnik, E.;Wojnicki, M.;Wιoch, G. Surf. Coat. Technol. 2012,207, 375. doi: 10.1016/j.surfcoat.2012.07.027
 - 
			
                    [12]
                
			
(12) Garfias-García, E.; Romero-Romo, M.; Ramírez-Silva, M. T.;Palomar-Pardavé, M. Int. J. Electrochem. Sci. 2012, 7, 3102.
 - 
			
                    [13]
                
			
(13) Scharifker, B. R.; Mostany, J. J. Electroanal. Chem. 1984, 177,13. doi: 10.1016/0022-0728(84)80207-7
 - 
			
                    [14]
                
			
(14) Sluyters-Rehbach, M.;Wijenberg, J. H. O. J.; Bosco, E.;Sluyters, J. H. J. Electroanal. Chem. 1987, 236 (1), 1.
 - 
			
                    [15]
                
			
(15) Heerman, L.; Tarallo, A. J. Electroanal. Chem. 1998, 451 (1),101.
 - 
			
                    [16]
                
			
(16) Heerman, L.; Tarallo, A. J. Electroanal. Chem.1999, 470 (1),70. doi: 10.1016/S0022-0728(99)00221-1
 - 
			
                    [17]
                
			
(17) Yue, J. P.; Yang, F. Z.; Tian, Z. Q.; Zhou, S. M. Acta Phys. -Chim.Sin. 2011, 27 (6), 1446. [岳俊培, 杨防祖, 田中群, 周绍民. 物理化学学报, 2011, 27 (6), 1446.] doi: 10.3866/PKU.WHXB20110620
 - 
			
                    [18]
                
			
(18) Zhou, L.; Dai, Y.; Zhang, H.; Jia, Y.; Zhang, J.; Li, C. Bull. Korean Chem. Soc. 2012, 33 (5), 1541. doi: 10.5012/bkcs.2012.33.5.1541
 - 
			
                    [19]
                
			
(19) Lomax, D. J.; Kinloch, I. A.; Dryfe, R. A.W. AuElectrodeposition on Carbon Materials. In Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference onNanotechnology, Birmingham, United Kingdom, Aug 20-23,2012; IEEE; 2012; pp 1-4.
 - 
			
                    [20]
                
			
(20) Granados-Ner, M.; Huizar, L. H. M.; Rios-Reyes, C. H.Química Nova 2011, 34 (3), 439.
 - 
			
                    [21]
                
			
(21) Emekli, U.;West, A. C. Electrochim. Acta 2009, 54 (4),1177. doi: 10.1016/j.electacta.2008.08.065
 - 
			
                    [22]
                
			
(22) Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem. 2011, 41 (6),705. doi: 10.1007/s10800-011-0283-2
 - 
			
                    [23]
                
			
(23) Pewnim, N.; Roy, S. Electrochim. Acta 2013, 90, 498. doi: 10.1016/j.electacta.2012.12.053
 - 
			
                    [24]
                
			
(24) Fletcher, S. Electrochim. Acta 1983, 28 (7), 917. doi: 10.1016/0013-4686(83)85167-6
 - 
			
                    [25]
                
			
(25) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamental and Applications, 2nd ed.; JohnWiley: New York,2001; pp 234-236.
 - 
			
                    [26]
                
			
(26) Ying, R. Y. J. Electrochem. Soc. 1988, 135 (12), 2957. doi: 10.1149/1.2095469
 - 
			
                    [27]
                
			
(27) Barry, F. J.; Cunnane, V. J. J. Electroanal. Chem. 2002, 537 (1),151.
 - 
			
                    [28]
                
			
(28) Hu,W.; Tan, C. Y.; Cui, H.; Zheng, Z. Q. The Chinese Journal of Nonferrous Metals 2010, 20 (5), 1006. [胡炜, 谭澄宇,崔航, 郑子樵. 中国有色金属学报, 2010, 20 (5), 1006.]
 - 
			
                    [29]
                
			
(29) Michailova, E.; Milchev, A. J. Appl. Electrochem. 1991, 21 (2),170. doi: 10.1007/BF01464299
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
 - 
				[2]
				
Ying Yang , Yonghan Wu , Zixuan Li , Lu Zhang , Rongqin Lin , Yefan Zhang , Jiquan Liu , Xiaohui Ning , Yan Li , Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024
 - 
				[3]
				
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
 - 
				[4]
				
Na Li , Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134
 - 
				[5]
				
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
 - 
				[6]
				
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
 - 
				[7]
				
Yan Xiao , Shuling Li , Yifan Li , Jianing Fan , Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025
 - 
				[8]
				
Shanying Chen , Kangning Huo , Ke Qi , Jingyi Li , Shuxin Li , Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067
 - 
				[9]
				
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
 - 
				[10]
				
Xuewei Qian , Xingwen Sun , Houjin Li , Zhanxiang Liu , Yuan Zheng , Lin Wu , Shuanglian Cai , Ying Xiong , Guangao Yu , Qingwen Liu , Jie Han , Xin Du , Chengshan Yuan , Qihan Zhang , Shuyong Zhang , Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126
 - 
				[11]
				
Chengshan Yuan , Xiaolong Li , Xiuping Yang , Xiangfeng Shao , Zitong Liu , Xiaolei Wang , Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073
 - 
				[12]
				
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
 - 
				[13]
				
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
 - 
				[14]
				
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
 - 
				[15]
				
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
 - 
				[16]
				
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
 - 
				[17]
				
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
 - 
				[18]
				
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
 - 
				[19]
				
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
 - 
				[20]
				
Jie WU , Zhihong LUO , Xiaoli CHEN , Fangfang XIONG , Li CHEN , Biao ZHANG , Bin SHI , Quansheng OUYANG , Jiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(746)
 - Abstract views(950)
 - HTML views(38)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: