Citation: ZHANG Tian-Lei, WANG Wei-Na, LIU Chang, LU Na, CHEN Miao, GUO Sha, WANG Wen-Liang. Computational Study of the Reaction Mechanism and Kinetics of CH3CHC(CH3)COOCH3 Ozonolysis[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2313-2320. doi: 10.3866/PKU.WHXB201310083 shu

Computational Study of the Reaction Mechanism and Kinetics of CH3CHC(CH3)COOCH3 Ozonolysis

  • Received Date: 9 July 2013
    Available Online: 8 October 2013

    Fund Project: 国家自然科学基金(21173139) (21173139)陕西师范大学国家级大学生创新性实验计划(1110718008)资助项目 (1110718008)

  • The reaction mechanism for the ozonolysis of trans-CH3CHC(CH3)COOCH3 as well as the isomerization reaction of CH3CHOO and CH3OC(O)C(CH3)OO) without and with a water molecule were investigated at the G3B3 level. The profile of the potential energy surface (PES) was constructed. Ozone adds to trans-CH3CHC(CH3)COOCH3 via a cyclic transition state to produce a highly unstable primary ozonide that can decompose readily to form P1(CH3CHOO + CH3OC(O)C(CH3)O) and P2(CH3CHO + CH3OC(O)C(CH3)OO) because the bond breaks in different positions. The total rate constants over the temperature range of 200-1200 K are obtained using the conventional transition state theory with Wigner tunneling correction. The calculated rate constant is 7.55×10-18 cm3·molecule-1·s-1 at 294 K, in od agreement with previous experimental data for similar reactions. The isomerization reaction of CH3CHOO and CH3OC (O)C(CH3)OO) with a water molecule can occur via α-addition process and β-hydrogen transfer mechanism. The former is more favorable than the latter. Compared with the naked isomerization reactions of CH3CHOO and CH3OC(O)C(CH3)OO), the presence of water molecules makes isomerization reactions much easier.

  • 加载中
    1. [1]

      (1) Xie, F. An Analysis of Stratosphere Troposphere Exchange andStratosphericWater Vapor and Ozone. Ph.D. Dissertation,Lanzhou University, Lanzhou, 2011. [谢飞. 平流层对流层物质交换以及平流层水汽与臭氧的研究[D]. 兰州: 兰州大学,2011.]

    2. [2]

      (2) Hoigné, J.; Bader, H.; Haag,W. R.; Staehelin, J. Water Res.1985, 19 (8), 99.

    3. [3]

      (3) Grosjean, E.; Grosjean, D. Atmos. Environ. 1998, 32 (20),3393. doi: 10.1016/S1352-2310(98)80005-8

    4. [4]

      (4) Alebi -Jureti , A.; Cvitas, T.; Klasinc, L. Chemosphere 2000, 41 (5), 667. doi: 10.1016/S0045-6535(99)00485-3

    5. [5]

      (5) Li, L. C.; Zou, Q.; Tian, A. M. Acta Chim. Sin. 2003, 61 (10),1524. [李来才, 邹勤, 田安民, 化学学报, 2003, 61 (10),1524.]

    6. [6]

      (6) Li, L. C.; Tian, A. M.; Xu, M. H. Acta Chim. Sin. 2003, 61 (8),1256. [李来才, 田安民, 徐明厚, 化学学报, 2003, 61 (8),1256.]

    7. [7]

      (7) Wang, Y. C.; Dai, G. L.; Geng, Z. Y.; Lü, L. L.;Wang, D. M.Acta Phys. -Chim. Sin. 2004, 20 (9), 1071. [王永成, 戴国梁,耿志远, 吕玲玲, 王冬梅. 物理化学学报, 2004, 20 (9), 1071.]doi: 10.3866/PKU.WHXB20040903

    8. [8]

      (8) Atkinson, R.; Arey, J. Chem. Rev. 2003, 103 (12), 4605. doi: 10.1021/cr0206420

    9. [9]

      (9) Cremer, D.; Crehuet, R.; Anglada, J. J. Am. Chem. Soc. 2001,123 (25), 6127. doi: 10.1021/ja010166f

    10. [10]

      (10) Yang, J.; Li, Q. S.; Zhang, S.W. J. Comput. Chem. 2008, 29 (2),247.

    11. [11]

      (11) Gillies, J. Z.; Gillies, C.W.; Lovas, F. J.; Matsumura, K.;Suenram, R. D.; Kraka, E.; Cremer, D. J. Am. Chem. Soc. 1991,113 (17), 6408. doi: 10.1021/ja00017a008

    12. [12]

      (12) Sun, T. L.;Wang, Y. D.; Zhang, C. X.; Sun, X. M.; Hu, J. T. Acta Chim. Sin. 2011, 69 (17), 1965. [孙廷利, 王玉东, 张晨曦, 孙孝敏, 胡敬田. 化学学报, 2011, 69 (17), 1965.]

    13. [13]

      (13) Wayne, R. P. Chemistry of Atmospheres; 3rd ed; OxfordUniversity Press: Oxford, 2000; p 775.

    14. [14]

      (14) Grosjean, E.; Grosjean, D. J. Atmos. Chem., 1997, 27 (3), 271.doi: 10.1023/A:1005868119515

    15. [15]

      (15) Bernard, F.; Eyglunent, G.; Daele, V.; Mellouki, A. J. Phys. Chem. A 2010, 114 (32), 8376. doi: 10.1021/jp104451v

    16. [16]

      (16) Sun, Y. H.; Cao, H. J.; Han, D. D.; Li, J.; He, M. X. Chem. Phys.2012, 402, 6. doi: 10.1016/j.chemphys.2012.03.015

    17. [17]

      (17) Sun, Y. H.; Cao, H. J.; Han, D. D.; Li, J.; He, M. X. Struct. Chem. 2013, 24 (5), 1451. doi: 10.1007/s11224-012-0170-4.

    18. [18]

      (18) Martinez, R. I.; Herron, J. T.; Huie, R. E. J. Am. Chem. Soc.1981, 103, 3807. doi: 10.1021/ja00403a031

    19. [19]

      (19) Neeb, P.; Sauer, F.; Horie, O.; Moortgat, G. K. Atmos. Environ.1997, 31 (10), 1417. doi: 10.1016/S1352-2310(96)00322-6

    20. [20]

      (20) Zhang, S.W.; Truong, N. T. VKLab, Version 1.0; University ofUtah: Salt Lake City, 2001.

    21. [21]

      (21) Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.J. Chem. Phys. 1999, 110 (16), 7650. doi: 10.1063/1.478676

    22. [22]

      (22) Resende, S. M.; Ornellas, F. R. Chem. Phys. Lett. 2000, 318 (4-5), 340. doi: 10.1016/S0009-2614(00)00019-1

    23. [23]

      (23) Du, B. N.; Zhang,W. C.; Feng, C. J.; Zhou, Z. Y. J. Mol. Struct. -Theochem 2004, 712 (1-3), 101. doi: 10.1016/j.theochem.2004.10.009

    24. [24]

      (24) Si,W. J.; Gao, S. P.; Ju, G. Z. Acta Phys. -Chim. Sin. 2003, 19,974. [司维江, 禚淑萍, 居冠之, 物理化学学报, 2003, 19,974.] doi: 10.3866/PKU.WHXB20031019

    25. [25]

      (25) Frisch, M. J.; Trucks, G.W.; Pople, J. A.; et al. Gaussian 03,Revision C.02; Gaussian Inc.: Pittsburgh, PA, 2003.

    26. [26]

      (26) From the NIST ChemistryWebbook, http:// webbook.nist. v/chemistry.

    27. [27]

      (27) Huisgen, H. 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.Ed.;Wiley: New York, 1984, Vol.1, Chapter 1.

    28. [28]

      (28) Kuczkowski, R. L. 1,3- Dipolar Cycloaddition Chemistry,Padwa, A. Ed.;Wiley: New York, 1984, Vol. 2, Chapter 11.

    29. [29]

      (29) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. doi: 10.1021/ja01607a027

    30. [30]

      (30) Bond, R. A. B.; Martincigh, B. S.; Mika, J. R.; Simoyi, R. H.J. Chem. Educ. 1998, 75 (9), 1158. doi: 10.1021/ed075p1158

    31. [31]

      (31) Martinez, R. I.; Herron, J. T.; Huie, R. E. J. Am. Chem. Soc.1981, 103 (13), 3807. doi: 10.1021/ja00403a031

    32. [32]

      (32) Gutbrod, R.; Schindler, R. N.; Kraka, E.; Cremer, D. Chem. Phys. Lett. 1996, 252 (3-4), 221. doi: 10.1016/0009-2614(96)00126-1

    33. [33]

      (33) Gutbrod, R.; Kraka, E.; Cremer, D.; Schindler, R. N. J. Am. Chem. Soc. 1997, 119 (31), 7330. doi: 10.1021/ja970050c

    34. [34]

      (34) Anglada, J. M.; Bofill, J. M.; Olivella, S.; Sole, A. J. Am. Chem. Soc. 1996, 18 (19), 4636.


  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    14. [14]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    17. [17]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(609)
  • Abstract views(1261)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return