Citation: ZHANG Qi, YU Hai-Zhu, SHI Jing. Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2321-2331. doi: 10.3866/PKU.WHXB201310082 shu

Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters

  • Received Date: 7 June 2013
    Available Online: 8 October 2013

    Fund Project: 国家自然科学基金(21272223, 21202006)资助项目 (21272223, 21202006)

  • A systematic theoretical study was carried out to investigate the origin of the relatively low reactivity of peptide-prolyl-thioesters in the native chemical ligation (NCL) reaction. Mechanistic calculations were performed on the two NCL reactions of peptide-prolyl-thioester (Path-Pro) and peptidealanyl-thioester (Path-Ala). The results show that both include three steps: intermolecular thiol-thioester exchange, transthioesterification, and a final intramolecular S→N acyl migration. The calculations indicate that the first step is the rate determining step of both pathways. Path-Pro is kinetically disfavored, so the peptide-prolyl-thioester is found to be less reactive in NCL reaction. This conclusion is consistent with the experimental observations. Further examination of the rate determining steps of these two pathways shows that the n→π* interaction of proline αN carbonyl increases the LUMO orbital energy of peptidyl-prolylthioester, decreases the interaction energy between proline carbonyl and the sulphur atom in aryl thiol, and finally increases the total energy barrier.

  • 加载中
    1. [1]

      (1) Dawson, P. E.; Muir, T.W.; Clark-Lewis, I.; Kent, S. B. H.Science 1994, 266, 776. doi: 10.1126/science.7973629

    2. [2]

      (2) (a) Adams, A. L.; Macmillan, D. J. Pept. Sci. 2013, 19, 65. doi: 10.1002/psc.2469

    3. [3]

      (b) Aucagne, V.; Valverde, I. E.; Marceau, P.; Galibert, M.;Dendane, N.; Delmas, A. F. Angew. Chem. Int. Edit. 2012, 51,11320.

    4. [4]

      (c) Huang, Y. C.; Li, Y. M.; Chen, Y.; Pan, M.; Li, Y. T.; Yu, L.;Guo, Q. X.; Liu, L. Angew. Chem. Int. Edit. 2013, 52, 4858.

    5. [5]

      (d) Zhan, C. Y.; Varney, K.; Yuan,W. R.; Zhao, L.; Lu,W. Y.J. Am. Chem. Soc. 2012, 134, 6855.

    6. [6]

      (e) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin,Y.; Cui, H. K.; Liu, L. Angew. Chem. Int. Edit. 2011, 50, 7645.

    7. [7]

      (f) McGinty, R. K.; Kim, J.; Chatterjee, C.; Roeder, R. G.; Muir,T.W. Nature 2008, 453, 812.

    8. [8]

      (g) Fang, G. M.;Wang, J. X.; Liu, L. Angew. Chem. Int. Edit.2012, 51, 10347.

    9. [9]

      (h) Torbeev, V. Y.; Raghuraman, H.; Mandal, K.; Senapati, S.;Perozo, E.; Kent, S. B. H. J. Am. Chem. Soc. 2009, 131, 884.

    10. [10]

      (i) Zheng, J. S.; Chang, H. N.;Wang, F. L.; Liu, L. J. Am. Chem. Soc. 2011, 133, 11080.

    11. [11]

      (3) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 10068. doi: 10.1073/pnas.96.18.10068

    12. [12]

      (4) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew. Chem. Int. Edit.2010, 49, 9500. doi: 10.1002/anie.201005513

    13. [13]

      (5) Wang, C. J.; Li, Y.; Yang, X. Y.; Lin, L. Acta Phys. -Chim. Sin.2007, 23, 305. [王朝杰, 李永, 杨新宇, 林丽. 物理化学学报, 2007, 23, 305.] doi: 10.1016/S1872-1508(07)60024-2

    14. [14]

      (6) Zhang, B. B.; Zhao, C.;Wang, X. S.; He, L.; Du,W. H. Acta Phys. -Chim. Sin. 2013, 29, 1080. [张兵兵, 赵聪, 王雪松,何蕾, 杜为红. 物理化学学报, 2013, 29, 1080.] doi: 10.3866/PKU.WHXB201303111

    15. [15]

      (7) Wang, C. J.; Cai, Y. P.; Huang, X. H.;Wei, T. Acta Phys. -Chim. Sin. 2011, 27, 352. [王朝杰, 蔡跃飘, 黄旭慧, 卫涛. 物理化学学报, 2011, 27, 352.] doi: 10.3866/PKU.WHXB20110232

    16. [16]

      (8) Pollock, S. B.; Kent, S. B. H. Chem. Commun. 2011, 47, 2342.doi: 10.1039/c0cc04120c

    17. [17]

      (9) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.

    18. [18]

      (10) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    19. [19]

      (11) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    20. [20]

      (12) Paddon-Row, M. N.; Anderson, C. D.; Houk, K. N. J. Org. Chem. 2009, 74, 861. doi: 10.1021/jo802323p

    21. [21]

      (13) Hayden, A. E.; Houk, K. N. J. Am. Chem. Soc. 2009, 131,4084. doi: 10.1021/ja809142x

    22. [22]

      (14) Zhang, S. L.; Fu, Y.; Shang, R.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2010, 132, 638. doi: 10.1021/ja907448t

    23. [23]

      (15) Shang, R.; Xu, Q.; Jiang, Y. Y.;Wang, Y.; Liu, L. Org. Lett.2010, 12, 1000. doi: 10.1021/ol100008q

    24. [24]

      (16) Shang, R.; Yang, Z.W.;Wang, Y.; Zhang, S. L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391. doi: 10.1021/ja107103b

    25. [25]

      (17) Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A.W.; bbi,A.; Jonas, V.; Kohler, K. F.; Steg Mann, R.; Veldkamp, A.;Frenking, G. Chem. Phys. Lett. 1993, 208, 237. doi: 10.1016/0009-2614(93)89068-S

    26. [26]

      (18) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.doi: 10.1021/j100377a021

    27. [27]

      (19) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x

    28. [28]

      (20) Lide, D. R. CRC Handbook of Chemistry and Physics, 87th ed.;Taylor & Francis: Boca Raton, Florida; 2006-2007.

    29. [29]

      (21) Tissandier, M. D.; Cowen, K. A.; Feng,W. Y.; Gundlach, E.;Cohen, M. H.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A 1998,102, 7787. doi: 10.1021/jp982638r

    30. [30]

      (22) (a) Johnson, E. C. B.; Kent, S. B. H. J. Am. Chem. Soc. 2006,128, 6640. doi: 10.1021/ja058344i

    31. [31]

      (b) Dawson, P. E.; Churchill, M. J.; Ghadiri, M. R.; Kent, S. B.H. J. Am. Chem. Soc. 1997, 119, 4325.

    32. [32]

      (23) (a)Wang, C.; Guo, Q. X.; Fu, Y. Chem. Asian J. 2011, 6, 1241.doi: 10.1002/asia.201000760

    33. [33]

      (b) Zheng, J. S.; Cui, H. K.; Fang, G. M.; Xi,W. X.; Liu, L.ChemBioChem 2010, 11, 511.

    34. [34]

      (c)Wang, C.; Guo, Q. X. Sci. China Chem. 2012, 55, 2075.

    35. [35]

      (d)Wang, C.; Liu, L. Chin. J. Chem. 2012, 30, 1974.

    36. [36]

      (24) Hinderaker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188.doi: 10.1110/ps.0241903

    37. [37]

      (25) (a) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem.2012, 77, 658. doi: 10.1021/jo202342q

    38. [38]

      (b) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc.2008, 130, 10848.

    39. [39]

      (26) (a) Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243. doi: 10.1021/ol062030y

    40. [40]

      (b) Nakatani, K.; Matsuno, T.; Adachi, K.; Hagihara, S.; Saito,I. J. Am. Chem. Soc. 2001, 123, 5695.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    20. [20]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

Metrics
  • PDF Downloads(615)
  • Abstract views(983)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return