Citation:
ZHANG Qi, YU Hai-Zhu, SHI Jing. Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters[J]. Acta Physico-Chimica Sinica,
;2013, 29(11): 2321-2331.
doi:
10.3866/PKU.WHXB201310082
-
A systematic theoretical study was carried out to investigate the origin of the relatively low reactivity of peptide-prolyl-thioesters in the native chemical ligation (NCL) reaction. Mechanistic calculations were performed on the two NCL reactions of peptide-prolyl-thioester (Path-Pro) and peptidealanyl-thioester (Path-Ala). The results show that both include three steps: intermolecular thiol-thioester exchange, transthioesterification, and a final intramolecular S→N acyl migration. The calculations indicate that the first step is the rate determining step of both pathways. Path-Pro is kinetically disfavored, so the peptide-prolyl-thioester is found to be less reactive in NCL reaction. This conclusion is consistent with the experimental observations. Further examination of the rate determining steps of these two pathways shows that the n→π* interaction of proline αN carbonyl increases the LUMO orbital energy of peptidyl-prolylthioester, decreases the interaction energy between proline carbonyl and the sulphur atom in aryl thiol, and finally increases the total energy barrier.
-
-
-
[1]
(1) Dawson, P. E.; Muir, T.W.; Clark-Lewis, I.; Kent, S. B. H.Science 1994, 266, 776. doi: 10.1126/science.7973629
-
[2]
(2) (a) Adams, A. L.; Macmillan, D. J. Pept. Sci. 2013, 19, 65. doi: 10.1002/psc.2469
-
[3]
(b) Aucagne, V.; Valverde, I. E.; Marceau, P.; Galibert, M.;Dendane, N.; Delmas, A. F. Angew. Chem. Int. Edit. 2012, 51,11320.
-
[4]
(c) Huang, Y. C.; Li, Y. M.; Chen, Y.; Pan, M.; Li, Y. T.; Yu, L.;Guo, Q. X.; Liu, L. Angew. Chem. Int. Edit. 2013, 52, 4858.
-
[5]
(d) Zhan, C. Y.; Varney, K.; Yuan,W. R.; Zhao, L.; Lu,W. Y.J. Am. Chem. Soc. 2012, 134, 6855.
-
[6]
(e) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin,Y.; Cui, H. K.; Liu, L. Angew. Chem. Int. Edit. 2011, 50, 7645.
-
[7]
(f) McGinty, R. K.; Kim, J.; Chatterjee, C.; Roeder, R. G.; Muir,T.W. Nature 2008, 453, 812.
-
[8]
(g) Fang, G. M.;Wang, J. X.; Liu, L. Angew. Chem. Int. Edit.2012, 51, 10347.
-
[9]
(h) Torbeev, V. Y.; Raghuraman, H.; Mandal, K.; Senapati, S.;Perozo, E.; Kent, S. B. H. J. Am. Chem. Soc. 2009, 131, 884.
-
[10]
(i) Zheng, J. S.; Chang, H. N.;Wang, F. L.; Liu, L. J. Am. Chem. Soc. 2011, 133, 11080.
-
[11]
(3) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 10068. doi: 10.1073/pnas.96.18.10068
-
[12]
(4) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew. Chem. Int. Edit.2010, 49, 9500. doi: 10.1002/anie.201005513
-
[13]
(5) Wang, C. J.; Li, Y.; Yang, X. Y.; Lin, L. Acta Phys. -Chim. Sin.2007, 23, 305. [王朝杰, 李永, 杨新宇, 林丽. 物理化学学报, 2007, 23, 305.] doi: 10.1016/S1872-1508(07)60024-2
-
[14]
(6) Zhang, B. B.; Zhao, C.;Wang, X. S.; He, L.; Du,W. H. Acta Phys. -Chim. Sin. 2013, 29, 1080. [张兵兵, 赵聪, 王雪松,何蕾, 杜为红. 物理化学学报, 2013, 29, 1080.] doi: 10.3866/PKU.WHXB201303111
-
[15]
(7) Wang, C. J.; Cai, Y. P.; Huang, X. H.;Wei, T. Acta Phys. -Chim. Sin. 2011, 27, 352. [王朝杰, 蔡跃飘, 黄旭慧, 卫涛. 物理化学学报, 2011, 27, 352.] doi: 10.3866/PKU.WHXB20110232
-
[16]
(8) Pollock, S. B.; Kent, S. B. H. Chem. Commun. 2011, 47, 2342.doi: 10.1039/c0cc04120c
-
[17]
(9) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[18]
(10) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[19]
(11) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[20]
(12) Paddon-Row, M. N.; Anderson, C. D.; Houk, K. N. J. Org. Chem. 2009, 74, 861. doi: 10.1021/jo802323p
-
[21]
(13) Hayden, A. E.; Houk, K. N. J. Am. Chem. Soc. 2009, 131,4084. doi: 10.1021/ja809142x
-
[22]
(14) Zhang, S. L.; Fu, Y.; Shang, R.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2010, 132, 638. doi: 10.1021/ja907448t
-
[23]
(15) Shang, R.; Xu, Q.; Jiang, Y. Y.;Wang, Y.; Liu, L. Org. Lett.2010, 12, 1000. doi: 10.1021/ol100008q
-
[24]
(16) Shang, R.; Yang, Z.W.;Wang, Y.; Zhang, S. L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391. doi: 10.1021/ja107103b
-
[25]
(17) Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A.W.; bbi,A.; Jonas, V.; Kohler, K. F.; Steg Mann, R.; Veldkamp, A.;Frenking, G. Chem. Phys. Lett. 1993, 208, 237. doi: 10.1016/0009-2614(93)89068-S
-
[26]
(18) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.doi: 10.1021/j100377a021
-
[27]
(19) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
-
[28]
(20) Lide, D. R. CRC Handbook of Chemistry and Physics, 87th ed.;Taylor & Francis: Boca Raton, Florida; 2006-2007.
-
[29]
(21) Tissandier, M. D.; Cowen, K. A.; Feng,W. Y.; Gundlach, E.;Cohen, M. H.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A 1998,102, 7787. doi: 10.1021/jp982638r
-
[30]
(22) (a) Johnson, E. C. B.; Kent, S. B. H. J. Am. Chem. Soc. 2006,128, 6640. doi: 10.1021/ja058344i
-
[31]
(b) Dawson, P. E.; Churchill, M. J.; Ghadiri, M. R.; Kent, S. B.H. J. Am. Chem. Soc. 1997, 119, 4325.
-
[32]
(23) (a)Wang, C.; Guo, Q. X.; Fu, Y. Chem. Asian J. 2011, 6, 1241.doi: 10.1002/asia.201000760
-
[33]
(b) Zheng, J. S.; Cui, H. K.; Fang, G. M.; Xi,W. X.; Liu, L.ChemBioChem 2010, 11, 511.
-
[34]
(c)Wang, C.; Guo, Q. X. Sci. China Chem. 2012, 55, 2075.
-
[35]
(d)Wang, C.; Liu, L. Chin. J. Chem. 2012, 30, 1974.
-
[36]
(24) Hinderaker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188.doi: 10.1110/ps.0241903
-
[37]
(25) (a) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem.2012, 77, 658. doi: 10.1021/jo202342q
-
[38]
(b) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc.2008, 130, 10848.
-
[39]
(26) (a) Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243. doi: 10.1021/ol062030y
-
[40]
(b) Nakatani, K.; Matsuno, T.; Adachi, K.; Hagihara, S.; Saito,I. J. Am. Chem. Soc. 2001, 123, 5695.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[3]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[4]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[5]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[6]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[7]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[8]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[9]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[10]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[11]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[12]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[13]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[14]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[15]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[16]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[17]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[18]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[19]
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
-
[20]
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844
-
[1]
Metrics
- PDF Downloads(615)
- Abstract views(983)
- HTML views(10)