Citation:
LI Wen-Zhe, WANG Li-Duo, GAO Rui, DONG Hao-Peng, NIU Guang-Da, GUO Xu-Dong, QIU Yong. Transforming Organic Ligands into a ZnS Protective Layer through the S2- Intermediate State in ex situ CdSe Quantum Dot Devices[J]. Acta Physico-Chimica Sinica,
;2013, 29(11): 2345-2353.
doi:
10.3866/PKU.WHXB201309242
-
In this paper, the tri-n-octylphosphine oxide (TOPO) ligand on CdSe quantum dots (QDs) are changed to ZnS coating layer through S2- intermediate state. After ligand exchange, the Fourier transform infrared (FTIR) spectra indicate that the long chain organic ligands are replaced by S2- ions. After ionic reaction, the generation of ZnS is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. In addition the UV-Vis absorption peaks did not move and transmission electron microscopy (TEM) results show that the diameters of the quantum dots decrease. Electrochemical impedance spectroscopy (EIS) results show that the interface resistance between the TiO2/QDs/electrolyte is reduced under illumination conditions, meaning that forward electron transport was enhanced. In addition, the intensity-modulated photovoltage spectroscopy (IMVS) and intensity-modulated photocurrent spectroscopy (IMPS) results reveal an increase in the electronic lifetime and diffusion rate increased. Finally, the conversion efficiency increases by 1.78 times from 0.98% (TOPO ligand) to 1.75% (ZnS coating).
-
-
-
[1]
(1) O′Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W. G.;Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[3]
(3) Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am.Chem. Soc. 1988, 110, 1216. doi: 10.1021/ja00212a033
-
[4]
(4) Watson, D. F. J. Phys. Chem. Lett. 2010, 1, 2299. doi: 10.1021/jz100571u
-
[5]
(5) Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E. H.Science 2009, 324, 1542. doi: 10.1126/science.1173812
-
[6]
(6) Gao, R.; Tian, J.; Liang, Z.; Zhang, Q.;Wang, L.; Cao, G.Nanoscale 2013, 5, 1894. doi: 10.1039/c2nr33599a
-
[7]
(7) Larson, D. R.; Zipfel,W. R.;Williams, R. M.; Clark, S.W.;Bruchez, M. P.;Wise, F.W.;Webb,W.W. Science 2003, 300,1434. doi: 10.1126/science.1083780
-
[8]
(8) Kim, H.; Jeong, H.; An, T. K.; Park, C. E.; Yong, K. ACS Appl.Mater. Inter. 2012, 5, 268.
-
[9]
(9) Gao, R.;Wang, L.; Ma, B.; Zhan, C.; Qiu, Y. Langmuir 2009,26, 2460.
-
[10]
(10) Gao, R.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong, H.; Qiu, Y.Phys. Chem. Chem. Phys. 2011, 13, 10635. doi: 10.1039/c0cp02820g
-
[11]
(11) Gao, R.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong, H.; Qiu, Y.J. Phys. Chem. C 2011, 115,17986. doi: 10.1021/jp204466h
-
[12]
(12) Gao, R.; Niu, G.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong,H.; Qiu, Y. Phys. Chem. Chem. Phys. 2012, 14, 5973. doi: 10.1039/c2cp24137d
-
[13]
(13) Gao, R.; Ma, B. B.;Wang, L. D.; Shi, Y. T.; Dong, H. P.; Qiu, Y.Acta Phys. -Chim. Sin. 2011, 27, 413. [高瑞, 马蓓蓓, 王立铎, 史彦涛, 董豪鹏, 邱勇. 物理化学学报, 2011, 27, 413.]doi: 10.3866/PKU.WHXB20110234
-
[14]
(14) Dong, H.;Wang, L.; Gao, R.; Ma, B.; Qiu, Y. J. Mater. Chem.2011, 21, 19389. doi: 10.1039/c1jm14191k
-
[15]
(15) Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys.2008, 103, 084304.
-
[16]
(16) Shalom, M.; Dor, S.; Ruühle, S.; Grinis, L.; Zaban, A. J. Phys.Chem. C 2009, 113, 3895.
-
[17]
(17) Choi, H.; Nicolaescu, R.; Paek, S.; Ko, J.; Kamat, P. V. ACSNano 2011, 5, 9238. doi: 10.1021/nn2035022
-
[18]
(18) Braga, A.; Giménez, S.; Concina, I.; Vomiero, A.; Mora-Seró, I.N. J. Phys. Chem. Lett. 2011, 2, 454. doi: 10.1021/jz2000112
-
[19]
(19) Ning, Z.; Tian, H.; Qin, H.; Zhang, Q.; Ågren, H.; Sun, L.; Fu,Y. J. Phys. Chem. C 2010, 114, 15184. doi: 10.1021/jp102978g
-
[20]
(20) Sambur, J. B.; Parkinson, B. A. J. Am. Chem. Soc. 2010, 132,2130. doi: 10.1021/ja9098577
-
[21]
(21) Zhang, H.; Cheng, K.; Hou, Y. M.; Fang, Z.; Pan, Z. X.;Wu,W.J.; Hua, J. L.; Zhong, X. H. Chem. Commun. 2012, 48, 11235.doi: 10.1039/c2cc36526j
-
[22]
(22) Deka, S.; Quarta, A.; Luo, M. G.; Falqui, A.; Boninelli, S.;Giannini, C.; Morello, G.; De Giorgi, M.; Lanzani, G.; Spinella,C.; Cin lani, R.; Pellegrino, T.; Manna, L. J. Am. Chem. Soc.2009, 131, 2948. doi: 10.1021/ja808369e
-
[23]
(23) Xing, G.; Chakrabortty, S.; Ngiam, S.W.; Chan, Y.; Sum, T. C.J. Phys. Chem. C 2011, 115, 17711. doi: 10.1021/jp205238q
-
[24]
(24) Xia, X.; Liu, Z.; Du, G.; Li, Y.; Ma, M. J. Phys. Chem. C 2010,114, 13414. doi: 10.1021/jp100442v
-
[25]
(25) Justo, Y.; ris, B.; Kamal, J. S.; Geiregat, P.; Bals, S.; Hens, Z.J. Am. Chem. Soc.2012, 134, 5484. doi: 10.1021/ja300337d
-
[26]
(26) Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, J.; Zhong, X. ACSNano 2012, 6, 3982. doi: 10.1021/nn300278z
-
[27]
(27) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc.1993, 115, 8706. doi: 10.1021/ja00072a025
-
[28]
(28) Lee, H. J.; Yum, J. H.; Leventis, H. C.; Zakeeruddin, S. M.;Haque, S. A.; Chen, P.; Seok, S. I.; Graätzel, M.; Nazeeruddin,M. K. J. Phys. Chem. C 2008, 112, 11600. doi: 10.1021/jp802572b
-
[29]
(29) Dibbell, R. S.; Youker, D. G.;Watson, D. F. J. Phys. Chem. C2009, 113, 18643. doi: 10.1021/jp9079469
-
[30]
(30) Lokteva, I.; Radychev, N.;Witt, F.; Borchert, H.; Parisi, J. R.;Kolny-Olesiak, J. J. Phys. Chem. C 2010, 114, 12784. doi: 10.1021/jp103300v
-
[31]
(31) Zillner, E.; Fengler, S.; Niyamakom, P.; Rauscher, F.; Köhler,K.; Dittrich, T. J. Phys. Chem. C 2012, 116, 16747. doi: 10.1021/jp303766d
-
[32]
(32) Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Science 2009,324, 1417. doi: 10.1126/science.1170524
-
[33]
(33) Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu,W.; Spokoyny, B.;Talapin, D. V. J. Am. Chem. Soc. 2011, 133, 10612. doi: 10.1021/ja2029415
-
[34]
(34) Kovalenko, M. V.; Bodnarchuk, M. I.; Zaumseil, J.; Lee, J. S.;Talapin, D. V. J. Am. Chem. Soc. 2010, 132, 10085. doi: 10.1021/ja1024832
-
[35]
(35) Kovalenko, M. V.; Bodnarchuk, M. I.; Talapin, D. V. J. Am.Chem. Soc. 2010, 132, 15124. doi: 10.1021/ja106841f
-
[36]
(36) Abel, K. A.; Qiao, H.; Young, J. F.; van Veggel, F. C. J. M.J. Phys. Chem. Lett. 2010, 1, 2334. doi: 10.1021/jz1007565
-
[37]
(37) Dworak, L.; Matylitsky, V. V.; Breus, V. V.; Braun, M.; Basché,T.;Wachtveitl, J. J. Phys. Chem. C 2011, 115, 3949. doi: 10.1021/jp111574w
-
[38]
(38) Jing, P.; Yuan, X.; Ji,W.; Ikezawa, M.;Wang, Y. A.; Liu, X.;Zhang, L.; Zhao, J.; Masumoto, Y. J. Phys. Chem. C 2010, 114,19256. doi: 10.1021/jp107524b
-
[39]
(39) Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. J. Am. Chem.Soc. 2003, 125, 11466. doi: 10.1021/ja0361749
-
[40]
(40) Mora-Seró, I. N.; Giménez, S.; Fabregat-Santia , F.; Gómez,R.; Shen, Q.; Toyoda, T.; Bisquert, J. Accounts Chem. Res.2009, 42, 1848. doi: 10.1021/ar900134d
-
[41]
(41) Samanta, A.; Deng, Z.; Liu, Y. Langmuir 2012, 28, 8205. doi: 10.1021/la300515a
-
[42]
(42) Wang, H.; Luan, C.; Xu, X.; Kershaw, S. V.; Rogach, A. L.J. Phys. Chem. C 2011, 116, 484.
-
[43]
(43) Zhong, X.; Feng, Y.; Zhang, Y. J. Phys. Chem. C 2006, 111, 526.
-
[44]
(44) Vogel, R.; Hoyer, P.;Weller, H. J. Phys. Chem. 1994, 98, 3183.doi: 10.1021/j100063a022
-
[45]
(45) Niu, G.;Wang, L.; Gao, R.; Ma, B.; Dong, H.; Qiu, Y. J. Mater.Chem. 2012, 22, 16914. doi: 10.1039/c2jm32459h
-
[46]
(46) Tachan, Z.; Shalom, M.; Hod, I.; Ruühle, S.; Tirosh, S.; Zaban,A. J. Phys. Chem. C 2011, 115, 6162. doi: 10.1021/jp112010m
-
[47]
(47) Zhang, L.;Wang, Y.; Xu, Z.; Li, H. J. Phys. Chem. B 2009, 113,5978. doi: 10.1021/jp900139z
-
[48]
(48) Li, H.; Brescia, R.; Krahne, R.; Bertoni, G.; Alcocer, M. J. P.;D′Andrea, C.; Scotognella, F.; Tassone, F.; Zanella, M.; DeGiorgi, M.; Manna, L. ACS Nano 2012, 6, 1637. doi: 10.1021/nn204601n
-
[49]
(49) Li, H.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.;Giannini, C.; Manna, L. Nano Letters 2011, 11, 4964. doi: 10.1021/nl202927a
-
[50]
(50) Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K. S.; Liu, H.;Levina, L.; Furukawa, M.;Wang, X.; Debnath, R.; Cha, D.;Chou, K.W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent,E. H. Nat. Mater. 2011, 10, 765. doi: 10.1038/nmat3118
-
[51]
(51) Buckley, A. N.;Wouterlood, H. J.;Woods, R. Hydrometallurgy1989, 22, 39. doi: 10.1016/0304-386X(89)90040-6
-
[52]
(52) Wang, D. H.;Wang, L.; Xu, A.W. Nanoscale 2012, 4, 2046.doi: 10.1039/c2nr11972b
-
[53]
(53) Gimenez, S.; Mora-Sero, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; mez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.;Bisquert, J. Nanotechnology 2009, 20, 295204. doi: 10.1088/0957-4484/20/29/295204
-
[54]
(54) Grätzel, M. Inorg. Chem. 2005, 44, 6841. doi: 10.1021/ic0508371
-
[55]
(55) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.Electrochimica Acta 2002, 47, 4213. doi: 10.1016/S0013-4686(02)00444-9
-
[56]
(56) Stergiopoulos, T.; Karakostas, S.; Falaras, P. J. Photochem.Photobiol. A: Chem. 2004, 163, 331. doi: 10.1016/j.jphotochem.2004.01.002
-
[57]
(57) Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M. Phys. Rev.Lett. 1998, 81, 2954. doi: 10.1103/PhysRevLett.81.2954
-
[58]
(58) Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys.Chem. B 1997, 101, 8141. doi: 10.1021/jp9714126
-
[59]
(59) Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M.J. Phys. Chem. B 2003, 107, 7536. doi: 10.1021/jp0348777
-
[60]
(60) Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M.;Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I.J. Phys. Chem. B 1997, 101, 10281. doi: 10.1021/jp972466i
-
[1]
-
-
-
[1]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[2]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[3]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[4]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[5]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[6]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[7]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[8]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[11]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[12]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[13]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[14]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[15]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[16]
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
-
[17]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[18]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[19]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[20]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[1]
Metrics
- PDF Downloads(440)
- Abstract views(942)
- HTML views(17)