Citation: LI Wen-Zhe, WANG Li-Duo, GAO Rui, DONG Hao-Peng, NIU Guang-Da, GUO Xu-Dong, QIU Yong. Transforming Organic Ligands into a ZnS Protective Layer through the S2- Intermediate State in ex situ CdSe Quantum Dot Devices[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2345-2353. doi: 10.3866/PKU.WHXB201309242 shu

Transforming Organic Ligands into a ZnS Protective Layer through the S2- Intermediate State in ex situ CdSe Quantum Dot Devices

  • Received Date: 8 July 2013
    Available Online: 24 September 2013

    Fund Project: 国家自然科学基金(51273104) (51273104)国家重点基础研究发展规划项目(973)(2009CB930602)资助 (973)(2009CB930602)

  • In this paper, the tri-n-octylphosphine oxide (TOPO) ligand on CdSe quantum dots (QDs) are changed to ZnS coating layer through S2- intermediate state. After ligand exchange, the Fourier transform infrared (FTIR) spectra indicate that the long chain organic ligands are replaced by S2- ions. After ionic reaction, the generation of ZnS is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. In addition the UV-Vis absorption peaks did not move and transmission electron microscopy (TEM) results show that the diameters of the quantum dots decrease. Electrochemical impedance spectroscopy (EIS) results show that the interface resistance between the TiO2/QDs/electrolyte is reduced under illumination conditions, meaning that forward electron transport was enhanced. In addition, the intensity-modulated photovoltage spectroscopy (IMVS) and intensity-modulated photocurrent spectroscopy (IMPS) results reveal an increase in the electronic lifetime and diffusion rate increased. Finally, the conversion efficiency increases by 1.78 times from 0.98% (TOPO ligand) to 1.75% (ZnS coating).

  • 加载中
    1. [1]

      (1) O′Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W. G.;Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

    3. [3]

      (3) Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am.Chem. Soc. 1988, 110, 1216. doi: 10.1021/ja00212a033

    4. [4]

      (4) Watson, D. F. J. Phys. Chem. Lett. 2010, 1, 2299. doi: 10.1021/jz100571u

    5. [5]

      (5) Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E. H.Science 2009, 324, 1542. doi: 10.1126/science.1173812

    6. [6]

      (6) Gao, R.; Tian, J.; Liang, Z.; Zhang, Q.;Wang, L.; Cao, G.Nanoscale 2013, 5, 1894. doi: 10.1039/c2nr33599a

    7. [7]

      (7) Larson, D. R.; Zipfel,W. R.;Williams, R. M.; Clark, S.W.;Bruchez, M. P.;Wise, F.W.;Webb,W.W. Science 2003, 300,1434. doi: 10.1126/science.1083780

    8. [8]

      (8) Kim, H.; Jeong, H.; An, T. K.; Park, C. E.; Yong, K. ACS Appl.Mater. Inter. 2012, 5, 268.

    9. [9]

      (9) Gao, R.;Wang, L.; Ma, B.; Zhan, C.; Qiu, Y. Langmuir 2009,26, 2460.

    10. [10]

      (10) Gao, R.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong, H.; Qiu, Y.Phys. Chem. Chem. Phys. 2011, 13, 10635. doi: 10.1039/c0cp02820g

    11. [11]

      (11) Gao, R.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong, H.; Qiu, Y.J. Phys. Chem. C 2011, 115,17986. doi: 10.1021/jp204466h

    12. [12]

      (12) Gao, R.; Niu, G.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong,H.; Qiu, Y. Phys. Chem. Chem. Phys. 2012, 14, 5973. doi: 10.1039/c2cp24137d

    13. [13]

      (13) Gao, R.; Ma, B. B.;Wang, L. D.; Shi, Y. T.; Dong, H. P.; Qiu, Y.Acta Phys. -Chim. Sin. 2011, 27, 413. [高瑞, 马蓓蓓, 王立铎, 史彦涛, 董豪鹏, 邱勇. 物理化学学报, 2011, 27, 413.]doi: 10.3866/PKU.WHXB20110234

    14. [14]

      (14) Dong, H.;Wang, L.; Gao, R.; Ma, B.; Qiu, Y. J. Mater. Chem.2011, 21, 19389. doi: 10.1039/c1jm14191k

    15. [15]

      (15) Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys.2008, 103, 084304.

    16. [16]

      (16) Shalom, M.; Dor, S.; Ruühle, S.; Grinis, L.; Zaban, A. J. Phys.Chem. C 2009, 113, 3895.

    17. [17]

      (17) Choi, H.; Nicolaescu, R.; Paek, S.; Ko, J.; Kamat, P. V. ACSNano 2011, 5, 9238. doi: 10.1021/nn2035022

    18. [18]

      (18) Braga, A.; Giménez, S.; Concina, I.; Vomiero, A.; Mora-Seró, I.N. J. Phys. Chem. Lett. 2011, 2, 454. doi: 10.1021/jz2000112

    19. [19]

      (19) Ning, Z.; Tian, H.; Qin, H.; Zhang, Q.; Ågren, H.; Sun, L.; Fu,Y. J. Phys. Chem. C 2010, 114, 15184. doi: 10.1021/jp102978g

    20. [20]

      (20) Sambur, J. B.; Parkinson, B. A. J. Am. Chem. Soc. 2010, 132,2130. doi: 10.1021/ja9098577

    21. [21]

      (21) Zhang, H.; Cheng, K.; Hou, Y. M.; Fang, Z.; Pan, Z. X.;Wu,W.J.; Hua, J. L.; Zhong, X. H. Chem. Commun. 2012, 48, 11235.doi: 10.1039/c2cc36526j

    22. [22]

      (22) Deka, S.; Quarta, A.; Luo, M. G.; Falqui, A.; Boninelli, S.;Giannini, C.; Morello, G.; De Giorgi, M.; Lanzani, G.; Spinella,C.; Cin lani, R.; Pellegrino, T.; Manna, L. J. Am. Chem. Soc.2009, 131, 2948. doi: 10.1021/ja808369e

    23. [23]

      (23) Xing, G.; Chakrabortty, S.; Ngiam, S.W.; Chan, Y.; Sum, T. C.J. Phys. Chem. C 2011, 115, 17711. doi: 10.1021/jp205238q

    24. [24]

      (24) Xia, X.; Liu, Z.; Du, G.; Li, Y.; Ma, M. J. Phys. Chem. C 2010,114, 13414. doi: 10.1021/jp100442v

    25. [25]

      (25) Justo, Y.; ris, B.; Kamal, J. S.; Geiregat, P.; Bals, S.; Hens, Z.J. Am. Chem. Soc.2012, 134, 5484. doi: 10.1021/ja300337d

    26. [26]

      (26) Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, J.; Zhong, X. ACSNano 2012, 6, 3982. doi: 10.1021/nn300278z

    27. [27]

      (27) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc.1993, 115, 8706. doi: 10.1021/ja00072a025

    28. [28]

      (28) Lee, H. J.; Yum, J. H.; Leventis, H. C.; Zakeeruddin, S. M.;Haque, S. A.; Chen, P.; Seok, S. I.; Graätzel, M.; Nazeeruddin,M. K. J. Phys. Chem. C 2008, 112, 11600. doi: 10.1021/jp802572b

    29. [29]

      (29) Dibbell, R. S.; Youker, D. G.;Watson, D. F. J. Phys. Chem. C2009, 113, 18643. doi: 10.1021/jp9079469

    30. [30]

      (30) Lokteva, I.; Radychev, N.;Witt, F.; Borchert, H.; Parisi, J. R.;Kolny-Olesiak, J. J. Phys. Chem. C 2010, 114, 12784. doi: 10.1021/jp103300v

    31. [31]

      (31) Zillner, E.; Fengler, S.; Niyamakom, P.; Rauscher, F.; Köhler,K.; Dittrich, T. J. Phys. Chem. C 2012, 116, 16747. doi: 10.1021/jp303766d

    32. [32]

      (32) Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Science 2009,324, 1417. doi: 10.1126/science.1170524

    33. [33]

      (33) Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu,W.; Spokoyny, B.;Talapin, D. V. J. Am. Chem. Soc. 2011, 133, 10612. doi: 10.1021/ja2029415

    34. [34]

      (34) Kovalenko, M. V.; Bodnarchuk, M. I.; Zaumseil, J.; Lee, J. S.;Talapin, D. V. J. Am. Chem. Soc. 2010, 132, 10085. doi: 10.1021/ja1024832

    35. [35]

      (35) Kovalenko, M. V.; Bodnarchuk, M. I.; Talapin, D. V. J. Am.Chem. Soc. 2010, 132, 15124. doi: 10.1021/ja106841f

    36. [36]

      (36) Abel, K. A.; Qiao, H.; Young, J. F.; van Veggel, F. C. J. M.J. Phys. Chem. Lett. 2010, 1, 2334. doi: 10.1021/jz1007565

    37. [37]

      (37) Dworak, L.; Matylitsky, V. V.; Breus, V. V.; Braun, M.; Basché,T.;Wachtveitl, J. J. Phys. Chem. C 2011, 115, 3949. doi: 10.1021/jp111574w

    38. [38]

      (38) Jing, P.; Yuan, X.; Ji,W.; Ikezawa, M.;Wang, Y. A.; Liu, X.;Zhang, L.; Zhao, J.; Masumoto, Y. J. Phys. Chem. C 2010, 114,19256. doi: 10.1021/jp107524b

    39. [39]

      (39) Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. J. Am. Chem.Soc. 2003, 125, 11466. doi: 10.1021/ja0361749

    40. [40]

      (40) Mora-Seró, I. N.; Giménez, S.; Fabregat-Santia , F.; Gómez,R.; Shen, Q.; Toyoda, T.; Bisquert, J. Accounts Chem. Res.2009, 42, 1848. doi: 10.1021/ar900134d

    41. [41]

      (41) Samanta, A.; Deng, Z.; Liu, Y. Langmuir 2012, 28, 8205. doi: 10.1021/la300515a

    42. [42]

      (42) Wang, H.; Luan, C.; Xu, X.; Kershaw, S. V.; Rogach, A. L.J. Phys. Chem. C 2011, 116, 484.

    43. [43]

      (43) Zhong, X.; Feng, Y.; Zhang, Y. J. Phys. Chem. C 2006, 111, 526.

    44. [44]

      (44) Vogel, R.; Hoyer, P.;Weller, H. J. Phys. Chem. 1994, 98, 3183.doi: 10.1021/j100063a022

    45. [45]

      (45) Niu, G.;Wang, L.; Gao, R.; Ma, B.; Dong, H.; Qiu, Y. J. Mater.Chem. 2012, 22, 16914. doi: 10.1039/c2jm32459h

    46. [46]

      (46) Tachan, Z.; Shalom, M.; Hod, I.; Ruühle, S.; Tirosh, S.; Zaban,A. J. Phys. Chem. C 2011, 115, 6162. doi: 10.1021/jp112010m

    47. [47]

      (47) Zhang, L.;Wang, Y.; Xu, Z.; Li, H. J. Phys. Chem. B 2009, 113,5978. doi: 10.1021/jp900139z

    48. [48]

      (48) Li, H.; Brescia, R.; Krahne, R.; Bertoni, G.; Alcocer, M. J. P.;D′Andrea, C.; Scotognella, F.; Tassone, F.; Zanella, M.; DeGiorgi, M.; Manna, L. ACS Nano 2012, 6, 1637. doi: 10.1021/nn204601n

    49. [49]

      (49) Li, H.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.;Giannini, C.; Manna, L. Nano Letters 2011, 11, 4964. doi: 10.1021/nl202927a

    50. [50]

      (50) Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K. S.; Liu, H.;Levina, L.; Furukawa, M.;Wang, X.; Debnath, R.; Cha, D.;Chou, K.W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent,E. H. Nat. Mater. 2011, 10, 765. doi: 10.1038/nmat3118

    51. [51]

      (51) Buckley, A. N.;Wouterlood, H. J.;Woods, R. Hydrometallurgy1989, 22, 39. doi: 10.1016/0304-386X(89)90040-6

    52. [52]

      (52) Wang, D. H.;Wang, L.; Xu, A.W. Nanoscale 2012, 4, 2046.doi: 10.1039/c2nr11972b

    53. [53]

      (53) Gimenez, S.; Mora-Sero, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; mez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.;Bisquert, J. Nanotechnology 2009, 20, 295204. doi: 10.1088/0957-4484/20/29/295204

    54. [54]

      (54) Grätzel, M. Inorg. Chem. 2005, 44, 6841. doi: 10.1021/ic0508371

    55. [55]

      (55) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.Electrochimica Acta 2002, 47, 4213. doi: 10.1016/S0013-4686(02)00444-9

    56. [56]

      (56) Stergiopoulos, T.; Karakostas, S.; Falaras, P. J. Photochem.Photobiol. A: Chem. 2004, 163, 331. doi: 10.1016/j.jphotochem.2004.01.002

    57. [57]

      (57) Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M. Phys. Rev.Lett. 1998, 81, 2954. doi: 10.1103/PhysRevLett.81.2954

    58. [58]

      (58) Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys.Chem. B 1997, 101, 8141. doi: 10.1021/jp9714126

    59. [59]

      (59) Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M.J. Phys. Chem. B 2003, 107, 7536. doi: 10.1021/jp0348777

    60. [60]

      (60) Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M.;Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I.J. Phys. Chem. B 1997, 101, 10281. doi: 10.1021/jp972466i


  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    3. [3]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    6. [6]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    7. [7]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    19. [19]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(440)
  • Abstract views(942)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return