Citation: ZENG Jian-Bang, JIANG Fang-Ming. A Mesoscale Smoothed Particle Hydrodynamics Model for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2371-2384. doi: 10.3866/PKU.WHXB201309131
-
We develop a model for the multi-disciplinary transport coupled electrochemical reaction processes in lithium-ion batteries via a smoothed particle hydrodynamics numerical approach. This model is based on a mesoscopic treatment to the micropore structures of electrodes. Focusing on the effects of solid active particle size, this work explores the feasibility of using this model for electrode microstructure design. The model results provide detailed distributive information of all the primary and participating parameters, including Li+ concentration in the electrolyte, Li concentration in solid active particles, solid/electrolyte phase potential, and transfer current density. Furthermore, macroscopic parameters such as the output voltage are also determined. Based on the simulation results, the underlying physicochemical fundamentals are analyzed and the relationships between the macroscopic performance of the battery and the size of solid active particles are revealed. The battery having the smallest solid active particles in both electrodes features a more uniform Li distribution inside the particles and a more uniform distribution of electrochemical reactions on the surface of each particle, leading to a higher output voltage.
-
-
[1]
(1) Jiang, F. M.; Zeng, J. B.;Wu,W. Adv. Mater. Indus. 2011, 12, 2.[蒋方明, 曾建邦, 吴伟. 新材料产业, 2011, 12, 2.]
-
[2]
(2) Venkatasailanathan, R.; Paul,W. C. N.; Sumitava, D.; Shriram,S.; Richard, D. B.; Venkat, R. S. J. Electrochem. Soc. 2012, 159 (3), R31.
-
[3]
(3) Du,W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.; Shyy,W. Int. J. Heat Mass Transfer 2010, 53 (17-18), 3552. doi: 10.1016/j.ijheatmasstransfer.2010.04.017
-
[4]
(4) Gu,W. B.;Wang, C. Y. J. Electrochem. Soc. 2000, 147 (8),2910. doi: 10.1149/1.1393625
-
[5]
(5) Wang, C. Y.; Gu,W. B.; Liaw, B. Y. J. Electrochem. Soc. 1998,145 (10), 3407. doi: 10.1149/1.1838820
-
[6]
(6) Smith, K.;Wang, C. Y. J. Power Sources 2006, 161, 628. doi: 10.1016/j.jpowsour.2006.03.050
-
[7]
(7) Fang,W. F.; Kwon, O. J.;Wang, C. Y. Int. J. Energy Res. 2010,34 (2), 107. doi: 10.1002/er.1652
-
[8]
(8) Ye, Y. H.; Shi, Y. X.; Cai, N. S.; Lee, J. J.; He, X. M. J. Power Sources 2012, 199, 227. doi: 10.1016/j.jpowsour.2011.10.027
-
[9]
(9) Zhang, X.; Shyy,W.; Sastry, A. M. J. Electrochem. Soc. 2007,154 (10), A910.
-
[10]
(10) Zhang, X.; Sastry, A. M.; Shyy,W. J. Electrochem. Soc. 2008,155 (7), A542.
-
[11]
(11) Yi, Y. B.;Wang, C.W.; Sastry, A. M. J. Eng. Mater. Techonol.2006, 128 (1), 73. doi: 10.1115/1.2130733
-
[12]
(12) Wang, C.W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154 (11),A1035.
-
[13]
(13) Garcia, R. E.; Chiang, Y. M.; Carter,W. C.; Limthongkul, P.;Bishop, C. M. J. Electrochem. Soc. 2005, 152 (1), A255.
-
[14]
(14) Garcia, R. E.; Chiang, Y. M. J. Electrochem. Soc. 2007, 154 (9),A856
-
[15]
(15) Smith, M.; Garcia, R. E.; Horn, Q. C. J. Electrochem. Soc. 2009,156 (11), A896.
-
[16]
(16) Awarke, A.;Wittler, M.; Pischinger, S.; Bockstette, J.J. Electrochem. Soc. 2012, 159 (6), A798.
-
[17]
(17) Liu, M. B.; Liu, G. R. Arch. Comput. Methods Eng. 2010, 17 (1), 25. doi: 10.1007/s11831-010-9040-7
-
[18]
(18) Jiang, F. M.; Sousa, A. C. M. Heat Mass Transfer 2007, 43 (5),479. doi: 10.1007/s00231-006-0131-9
-
[19]
(19) Jiang, F. M.; Oliveira, M. C. A.; Sousa, A. C. M. Comput. Phys. Commun. 2007, 176 (7), 471. doi: 10.1016/j.cpc.2006.12.003
-
[20]
(20) Jiang, F. M.; Sousa, A. C. M. J. Porous Media 2010, 13 (11),951. doi: 10.1615/JPorMedia.v13.i11
-
[21]
(21) Vishwakarma, V.; Das, A. K.; Das, P. K. Appl. Therm. Eng.2011, 31 (14), 2963.
-
[22]
(22) Wang, P.; Shao, J. L.; Qin, C. S. Acta Phys. Sin. 2012, 61 (23),234701. [王裴, 邵建立, 秦承森. 物理学报, 2012, 61 (23),234701.]
-
[23]
(23) Tartakovsky, A. M.; Tartakovsky, D. M.; Scheibe, T. D.; Meakin,P. SIAM J. Sci. Comput. 2008, 30 (6), 2799. doi: 10.1137/070691097
-
[24]
(24) Das, A. K.; Das, P. K. Int. J. Numer. Meth. Fl. 2011, 67 (6),671. doi: 10.1002/fld.v67.6
-
[25]
(25) Jiang, T.; Ouyang, J.; Li, X. J.; Zhang, L.; Ren, J. L. Acta Phys. Sin. 2011, 60 (9), 054701. [蒋涛, 欧阳杰, 栗雪娟, 张林,任金莲. 物理学报, 2011, 60 (9), 054701.]
-
[26]
(26) Ma, L. Q.; Chang, J. Z.; Liu, H. T.; Liu, M. B. Acta Phys. Sin.2012, 61 (5), 054701. [马理强, 常建忠, 刘汉涛, 刘谋斌. 物理学报, 2012, 61 (5), 054701.]
-
[27]
(27) Han, Y.W.; Qiang, H. F.; Zhao, J. L.; Gao,W. R. Acta Phys. Sin.2013, 62 (4), 044702. [韩亚伟, 强洪夫, 赵玖玲, 高巍然. 物理学报, 2013, 62 (4), 044702.]
-
[28]
(28) Wang, G. Q.; Mukherjee, P. P.;Wang, C. Y. Electrochim. Acta2006, 51, 3139. doi: 10.1016/j.electacta.2005.09.002
-
[29]
(29) Wang, G. Q.; Mukherjee, P. P.;Wang, C. Y. Electrochim. Acta2006, 51, 3151. doi: 10.1016/j.electacta.2005.09.003
-
[30]
(30) Nagarajan, G. S.; Zee, J.W. V.; Spotnitz, R. M. J. Electrochem. Soc. 1998, 145 (3), 771. doi: 10.1149/1.1838344
-
[31]
(31) Ramadass, P.; Haran, B.; madam, P. M.; White, R.; Popov, B.N. J. Electrochem. Soc. 2004, 151 (2), A196.
-
[32]
(32) Kuzminskii, Y. V.; Nyrkova, L. I.; Andriiko, A. A. J. Power Sources 1993, 46, 29. doi: 10.1016/0378-7753(93)80032-K
-
[33]
(33) Cleary, P.W.; Monaghan, J. J. J. Comput. Phys. 1999, 148 (1),227. doi: 10.1006/jcph.1998.6118
-
[34]
(34) Monaghan, J. J. Comput. Phys. Rep. 1985, 3 (2), 71. doi: 10.1016/0167-7977(85)90010-3
-
[35]
(35) Verlet, L. Phys. Rev. 1967, 159 (1), 98. doi: 10.1103/PhysRev.159.98
-
[36]
(36) Cleary, P.W. Appl. Math. Model 1998, 22 (12), 981. doi: 10.1016/S0307-904X(98)10031-8
-
[37]
(37) Ryan, E. M.; Tartakovsky, A. M.; Amona, C. Comput. Phys. Commun. 2010, 181 (12), 2008. doi: 10.1016/j.cpc.2010.08.022
-
[38]
(38) Wu,W.; Jiang, F. M. Mater. Charact. 2013, 80, 62. doi: 10.1016/j.matchar.2013.03.011
-
[39]
(39) Wu,W.; Jiang, F. M.; Zeng, J. B. Acta Phys. -Chim. Sin. 2013,29 (11), 2361. [吴伟, 蒋方明, 曾建邦. 物理化学学报, 2013,29 (11), 2361.] doi: 10.3866/PKU.WHXB201309032.
-
[1]
-
-
[1]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[2]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[7]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[8]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[9]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[10]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[11]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[12]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[13]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[14]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[15]
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
-
[16]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[17]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[18]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[19]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[20]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[1]
Metrics
- PDF Downloads(656)
- Abstract views(809)
- HTML views(6)