Citation: HU Yan, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun, TIAN Zhao-Wu. Factors Influencing Hydroxyl Radical Formation in a Photo-Induced Confined Etching System[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2392-2398. doi: 10.3866/PKU.WHXB201309043
-
In this paper, we studied the formation of free ·OH on a TiO2 nanotube array electrode in a photo-induced confined etching system. We used fluorescence spectroscopy, transient photocurrent response, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis to investigate the influence of several key factors, including the applied potential, the illumination time, and the pHvalue. The highest efficiency for the photoelectrocatalytic formation of free ·OH on the TiO2 nanotube array electrode was achieved at an applied potential of 1.0 V (vs a saturated calomel electrode (SCE)); the photoelectrocatalytic generation and consumption of free ·OH quickly approached a steady state in this system, as the confined etching layer formed by ·OH remained stable during illumination. This may allow od control of the etching precision during continuous etching processes. The highest efficiency for the photoelectrocatalytic formation of free ·OH on the TiO2 nanotube array electrode was observed at pH10. The results have an important significance for regulating and optimizing photo-induced confined etching system, which can be used to improve the etching speed or the leveling precision during the planarization of copper.
-
-
[1]
(1) Ishibashi, K.; Fujishima, A.;Watanabe, T.; Hashimoto, K.J. Photochem. Photobiol. A 2000, 134, 139. doi: 10.1016/S1010-6030(00)00264-1
-
[2]
(2) Hirakawa, T.; Nosaka, Y. Langmuir 2002, 18, 3247. doi: 10.1021/la015685a
-
[3]
(3) Ishibashi, K.; Fujishima, A.;Watanabe, T.; Hashimoto, K.Electrochem. Commun. 2000, 2, 207. doi: 10.1016/S1388-2481(00)00006-0
-
[4]
(4) Jorge, S. M. A.; Sene, J. J. D.; Florentino, A. D. O.J. Photochem. Photobiol. A 2005, 174, 71. doi: 10.1016/j.jphotochem.2005.03.010
-
[5]
(5) Ku, Y.; Lee, Y. C.;Wang,W. Y. J. Hazard. Mater. 2006, 138,350. doi: 10.1016/j.jhazmat.2006.05.057
-
[6]
(6) Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Small 2007, 3,300.
-
[7]
(7) Philippidis, N.; Sotiropoulos, S.; Efstathiou, A.; Poulios, I.J. Photochem. Photobiol. A 2009, 204, 129. doi: 10.1016/j.jphotochem.2009.03.007
-
[8]
(8) Murata, J.; Sadakuni, S.; Yagi, K.; Sano, Y.; Okanoto, T.; Arima,K.; Hattori, A. N.; Mimura, H.; Yamauchi, K. Jpn. J. Appl. Phys.2009, 48, 121001. doi: 10.1143/JJAP.48.121001
-
[9]
(9) Yagi, K.; Murata, J.; Kubota, A.; Sano, Y.; Hara, H.; Arima, K.;Okamoto, T.; Mimura, H.; Yamauchi, K. Jpn. J. Appl. Phys.2008, 47, 104. doi: 10.1143/JJAP.47.104
-
[10]
(10) Nowicka, A. M.; Hasse, U.; Hermes, M.; Scholz, F. Angew. Chem. Int. Edit. 2010, 49, 1061. doi: 10.1002/anie.v49:6
-
[11]
(11) Tian, Z.W.; Fen, Z. D.; Tian, Z. Q.; Zhuo, X. D.; Mu, J. Q.; Li,C. Z.; Lin, H. S.; Ren, B.; Xie, Z. X.; Hu,W. Faraday Discuss.1992, 94, 37. doi: 10.1039/fd9929400037
-
[12]
(12) Fang, Q. Y.; Zhou, J. Z.; Zhan, D. P.; Shi, K.; Tian, Z.W.; Tian,Z. Q. Chem. Commun. 2013, 49, 6451 doi: 10.1039/c3cc42368a
-
[13]
(13) Allam, N. K.; Shankar, K.; Grimes, C. A. Adv. Mater. 2008, 20,3942. doi: 10.1002/adma.v20:20
-
[14]
(14) Nageh, K. A.; Karthik, S.; Grames, C. A. J. Mater. Chem. 2008,18, 2341. doi: 10.1039/b718580d
-
[15]
(15) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor,G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K. S.;Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327. doi: 10.1021/jp809385x
-
[16]
(16) Beranek, R.; Tsuchiya, H.; Sugishima, T.; Macak, J. M.; Taveira,L.; Fujimoto, S.; Kisch, H.; Schmuki, P. Appl. Phys. Lett. 2005,87, 243114. doi: 10.1063/1.2140085
-
[17]
(17) Hirakawa, T.; Yawata, K.; Nosaka, Y. Appl. Catal. A: Gen. 2007,325, 105. doi: 10.1016/j.apcata.2007.03.015
-
[18]
(18) Anbar, M.; Meyerstein, D.; Neta, P. J. Phys. Chem. 1966, 70,2660. doi: 10.1021/j100880a034
-
[19]
(19) Sun, L.; Li, J.;Wang, C. L.; Lin, C. J.; Du, R. G.; Chen, H. B.Chin. J. Inorg. Chem. 2009, 25, 334. [孙岚, 李静, 王成林, 林昌健, 杜荣归, 陈鸿博. 无机化学学报, 2009, 25, 334.]
-
[20]
(20) Yon, S. S.; Smith, Y. R.; Misra, M.; Subramanian, V. Appl. Catal. B: Environ. 2008, 84, 372. doi: 10.1016/j.apcatb.2008.04.021
-
[21]
(21) Philippidis. N.; Sotiropoulos, S.; Efstathiou, A.; Poulios, I.J. Photochem. Photobiol. A 2009, 204, 129. doi: 10.1016/j.jphotochem.2009.03.007
-
[22]
(22) Liu, H.; Li, X. Z.; Leng, Y. J.; Li,W. Z. J. Phys. Chem. B 2003,107, 8988. doi: 10.1021/jp034113r
-
[23]
(23) Shi, J. Y.; Leng,W. H.; Cheng, X. F.; Zhang, J. Q.; Cao, C. N.Acta Phys. -Chim. Sin. 2005, 21, 971. [施晶莹, 冷文华, 程小芳, 张鉴清, 曹楚南. 物理化学学报, 2005, 21, 971.] doi: 10.3866/PKU.WHXB20050906
-
[24]
(24) Liu, H.;Wu, M.;Wu, H. J.; Sun, F. X.; Zheng, Y.; Li,W. Z. Acta Phys .-Chim. Sin. 2001, 17, 286. [刘鸿, 吴鸣, 吴合进, 孙福侠, 郑云, 李文钊. 物理化学学报, 2001, 17, 286.] doi: 10.3866/PKU.WHXB20010322
-
[25]
(25) Liu, H.; Cheng, S.;Wu, M.; Hu, H.; Zhang, J.; Li,W.; Cao, C.J. Phys. Chem. A 2000, 104, 7016. doi: 10.1021/jp000171q
-
[26]
(26) Zha, Q. X. Introduction to Kinetics on Electrode Process, 3rded.; Science Press: Beijing, 2002; pp 386-387. [査全性. 电极过程动力学导论. 第三版. 北京: 科学出版社, 2002: 386-387.]
-
[27]
(27) Leng,W. H.; Zhang, S.; Cheng, S. A.; Zhang, J. Q.; Cao, C. N.Chin. J. Chem. Phys. 2001, 14, 705. [冷文华, 张昭, 成少安, 张鉴清, 曹楚南. 化学物理学报, 2001, 14, 705.]
-
[28]
(28) Song, Y. Y.; Roy, P.; Paramasivam, I.; Schmuki, P. Angew. Chem. Int. Edit. 2010, 49, 351. doi: 10.1002/anie.200905111
-
[29]
(29) Berger, P.; Leitner, N. K. V.; Doré, M.; Legube, B. Water Res.1999, 33, 433. doi: 10.1016/S0043-1354(98)00230-9
-
[30]
(30) Poulios, I.; Tsachpinis, I. J. Chem. Technol. Biotechnol. 1999,74, 349.
-
[31]
(31) Sauer, T.; Neto, G. C.; José, H. J.; Moreira, R. F. P. M.J. Photochem. Photobiol. A 2002, 149, 147. doi: 10.1016/S1010-6030(02)00015-1
-
[1]
-
-
[1]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[2]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[3]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[4]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[5]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[8]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[9]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[10]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[11]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[12]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[13]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[14]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[15]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[16]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[17]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[18]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[19]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[20]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[1]
Metrics
- PDF Downloads(597)
- Abstract views(544)
- HTML views(14)