Citation: LI Wen, REN Ying-Hui, ZHAO Feng-Qi, ZHANG Xian-Bo, MA Hai-Xia, XU Kang-Zhen, WANG Bo-Zhou, YI Jian-Hua, SONG Ji-Rong, HU Rong-Zu. Effects of Lead Complex-Based BTATz on Thermal Behaviors, Non-Isothermal Reaction Kinetics and Combustion Properties of DB/RDX-CMDB Propellants[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2087-2094. doi: 10.3866/PKU.WHXB201308301 shu

Effects of Lead Complex-Based BTATz on Thermal Behaviors, Non-Isothermal Reaction Kinetics and Combustion Properties of DB/RDX-CMDB Propellants

  • Received Date: 14 June 2013
    Available Online: 30 August 2013

    Fund Project: 国家自然科学基金(21101127, 21073141) (21101127, 21073141)中国总装预研基金(9140A28020111BQ3401) (9140A28020111BQ3401)中国总装预研基金(A3120110005)资助项目 (A3120110005)

  • The composite double base (DB)/hexogen (RDX)-modified double base (CMDB) propellants (Nos. DB001 and CMDB100) were prepared with the lead complex of 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (LCBTATz), with and without the ballistic modifier. Their thermal behaviors and nonisothermal decomposition reaction kinetics were investigated by thermogravimetry, derivative thermogravimetry (TG-DTG), and differential scanning calorimetry (DSC). For the LCBTATz-DB propellant, there was one mass loss stage in the TG curve and one exothermic peak in the DSC curve over the temperature range 350-540 K. For LCBTATz-CMDB, there were two continuous exothermic stages in the TG curve, and only one corresponding exothermic peak in the DSC curve over the range 390-540 K. The exothermal decomposition reaction mechanisms of LCBTATz-DB and LCBTATz-CMDB follow the functions f(α)=α-1/2 and f(α)=2(1-α)3/2, respectively (α: conversion degree). The self-accelerating decomposition temperatures (TSADT), thermal ignition temperatures (TTITT), critical temperatures of thermal explosion (Tb), adiabatic timesto-explosion (tTlad), and thermodynamic parameters of activation reaction were calculated, and the thermal safety was evaluated. For DB001, TSADT=444.50 K, TTITT=453.96 K, Tb=471.84 K; tTlad=39.36 s. For CMDB100, TSADT=442.38 K, TTITT=452.89 K,Tb=464.13 K,tTlad=21.3 s. As a high-efficiency combustion catalyst, LCBTATz in double-base propellants increases the propulsion rate and reduces the pressure index for larger scale pressures. This makes the DB propellant appear to have a significant super burning effect at 2-8 MPa and a "mesa effect" at 8-12 MPa. Meanwhile, the pressure exponent of the CMDB propellant decreased to 0.18.

  • 加载中
    1. [1]

      (1) Chavez, D.; Hiskey, M.; Darrenl, D. N. Propellants, Explosives Pyrotechnics 2004, 29, 209.

    2. [2]

      (2) Hickey, M. A.; Chavez, D. E.; Naud, D. Preparation of 3,3'-Azobis(6-amino-1,2,4,5-tetrazine). US Patent, 6342589, 2002.

    3. [3]

      (3) Hickey, M. A.; Chavez, D. E.; Naud, D. 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine or Salt Thereof. US Patent,6657059, 2003.

    4. [4]

      (4) Yue, S. T.; Yang, S. Q. Chin. J. Energy Mater. 2004, 12, 155.[岳守体, 阳世清.含能材料, 2004, 12, 155.]

    5. [5]

      (5) Wang, B. Z.; Lai, W. P.; Liu, Q.; Lian, P.; Xue, Y. Q. Chin. J. Org. Chem. 2008, 28, 422. [王伯周,来蔚鹏,刘愆,廉鹏,薛永强. 有机化学, 2008, 28, 422.]

    6. [6]

      (6) Saikia, A.; Sivabalan, R.; Polke, B. G.; re, G. M.; Singh, A.;Rao, A. S.; Sikder, A. K. J. Hazard. Mater. 2009, 170, 306. doi: 10.1016/j.jhazmat.2009.04.095

    7. [7]

      (7) Zhang, X. G.; Zhu, H.; Yang, S. Q.; Zhang, W.; Zhao, F. Q.; Liu,Z. R.; Pan, Q. Chin. J. Prop. Technol. 2007, 8, 322. [张兴高,朱慧,阳世清,张炜, 赵凤起,刘子如, 潘清.推进技术, 2007, 8, 322.]

    8. [8]

      (8) Son, S. F.; Berghout, H. L.; Bolme, C. A.; Chavez, D. E.; Naud,D.; Hiskey, M. A. Proceedings of the Combustion Institute2000, 28, 919. doi: 10.1016/S0082-0784(00)80298-2

    9. [9]

      (9) Yi, J. H.; Zhao, F. Q.; Wang, B. Z.; Liu, Q.; Zhou, C.; Hu, R. Z.;Ren, Y. H.; Xu, S. Y.; Xu, K. Z.; Ren, X. N. J. Hazard. Mater. 2010, 181, 432. doi: 10.1016/j.jhazmat.2010.05.029

    10. [10]

      (10) Hickey, M. A.; Chavez, D. E.; Naud, D. Low-SmokePyrotechnic Compositions. US Patent, 6312537, 2001.

    11. [11]

      (11) Li, S. W.; Zhao, F. Q.; Yuan, C.; Luo, Y.; Gao, Y. Chin. J. Solid Rocket Tech. 2002, 25, 36. [李上文, 赵凤起,袁潮,罗阳,高茵.固体火箭技术, 2002, 25, 36.]

    12. [12]

      (12) Fan, X. Z.; Li, J. Z.; Zhang, L. Y.; Wang, B. Z.; Liu, X. G. Chin. J. Energ. Mater. 2007, 15, 316. [樊学忠, 李吉祯,张腊莹,王伯周, 刘小刚. 含能材料, 2007, 15, 316.]

    13. [13]

      (13) Zhao, F. Q.; Chen, P.; Li, S. W.; Wang, B. C.; Du, H.; Deng, M.Z. Acta Armamentarii. 2004, 25, 30. [赵凤起,陈沛,李上文,王百成,杜恒,邓敏智. 兵工学报, 2004, 25, 30.]

    14. [14]

      (14) Deng, M. Z.; Du, H.; Zhao, F. Q.; Luo, Y.; Yuan, C. J. Solid Rocket. Technol. 2003, 26, 53. [邓敏智,杜恒,赵凤起, 罗阳,袁潮.固体火箭技术, 2003, 26, 53.]

    15. [15]

      (15) Singh, G.; Felix, P. J. Hazard. Mater. 2002, A90, 1.

    16. [16]

      (16) Denisyuk, A. P.; Demidova, L. A. Combustion, Explosion, and Shock Waves 2004, 40, 311. doi: 10.1023/B:CESW.0000028944.73795.0e

    17. [17]

      (17) Zhu, C. G.;Wang, F. W.; Chu, D. B. Chin. J. Inorg. Chem.2007, 23, 335. [朱传高, 王凤武, 褚道葆. 无机化学学报,2007, 23, 335.]

    18. [18]

      (18) Dong, X. F.; Li, Y.; Xiong, X. F.; Cao, R. L. Chin. J. Expl. Prop. 2011, 34, 69. [董秀芳,李煜, 熊贤峰, 曹瑞林.火炸药学报, 2011, 34, 69.]

    19. [19]

      (19) Zhao, F. Q.; Gao, H. X.; Luo, Y.; Hu, R. Z.; Pei, C.; Gao, S. L.;Yang, X. W.; Shi, Q. Z. J. Therm. Anal. Cal. 2006, 85, 791.doi: 10.1007/s10973-005-7455-4

    20. [20]

      (20) Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Gao, H. X.; Hu, R. Z. Chem. Res. Chin. Univ. 2008, 24, 1. doi: 10.1016/S1005-9040(08)60001-X

    21. [21]

      (21) Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Hang, L. Y.; Gao, H. X.; Hu, R.Z. J. Hazard. Mater. 2009, 165, 853. doi: 10.1016/j.jhazmat.2008.10.107

    22. [22]

      (22) Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Gao, H. X.; Hu, R. Z.; Hao, H.X.; Pei, Q.; Gao, Y. Acta Phys. -Chim. Sin. 2007, 23, 1316. [仪建华, 赵凤起, 徐司雨, 高红旭,胡荣祖, 郝海霞,裴庆,高茵.物理化学学报, 2007, 23, 1316.] doi: 10.1016/S1872-1508(07)60065-5

    23. [23]

      (23) Yi, J. H.; Zhao, F. Q.; Xu, S.Y.; Zhang, L.Y.; Ren, X. N.; Gao,H. X.; Hu, R. Z. J. Therm. Anal. Cal. 2009, 95, 381.doi: 10.1007/s10973-008-9241-6

    24. [24]

      (24) Yi, J. H.; Zhao, F. Q.; Ren, Y. H.; Wang, B. Z.; Zhou, C.; Ren,X. N.; Xu, S. Y.; Hao, H. X.; Hu, R. Z. J. Therm. Anal. Cal.2011, 104, 1029. doi: 10.1007/s10973-010-1258-y

    25. [25]

      (25) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.;Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press:Beijing, 2008; pp 322-334. [胡荣祖, 高胜利,赵凤起, 史启桢, 张同来, 张建军.热分析动力学. 北京: 科学出版社, 2008:322-334.]

    26. [26]

      (26) Zhao, F. Q.; Hu, R. Z.; Gao, H. X.; Ma, H. X. Thermochemical Properties, Nonisothermal Decomposition Reaction Kinetics and Quantum Chemical Investigation of 2,6-Diamino-3,5- dinitropyrazine-1-oxide (LLM-105), New Developments in Hazardous Materials Research; Nova Science Publishers Inc.:NewYork, 2006; Chapter 4.

    27. [27]

      (27) Ma, H. X.; Song, J. R.; Zhao, F. Q.; Hu, R. Z.; Xiao, H. M.J. Phys. Chem. A 2007, 111, 8642. doi: 10.1021/jp073092o

    28. [28]

      (28) Zhang, T. L.; Hu, R. Z.; Xie, Y.; Li, F. P. Thermochim. Acta1994, 244, 171. doi: 10.1016/0040-6031(94)80216-5

    29. [29]

      (29) Smith, L. C. Thermochim. Acta 1975, 13, 1. doi: 10.1016/0040-6031(75)80060-8

    30. [30]

      (30) Hu, R. Z.; Zhang, H.; Xia, Z. M.; Guo, P. J.; Gao, S. L.; Shi, Q.Z.; Lu, G. E.; Jiang, J. Y. Chin. J. Energ. Mater. 2003, 11, 130.[胡荣祖,张海,夏志明,郭鹏江,高胜利, 史启祯,路桂娥, 江劲勇.含能材料, 2003, 11, 130.]

    31. [31]

      (31) Chen, P.; Zhao, F. Q.; Luo, Y.; Hu, R. Z.; Gao, S. L.; Zheng, Y.M.; Deng, M. Z.; Gao, Y. Chinese Journal of Chemistry2004, 22, 1056.

    32. [32]

      (32) Yi, J. H.; Zhao, F. Q.; Hong, W. L.; Xu, S. Y.; Hu, R. Z.; Chen,Z. Q.; Zhang, L. Y. J. Hazard. Mater. 2009, 11, 021.

    33. [33]

      (33) Li, Z. L.; Ma, Z. L.; Xiao, Z. L.; Zhang, X. Z. Chin. J. Energ. Mater. 2006, 14, 95. [李志良,马忠亮, 肖忠良,张续柱.含能材料, 2006, 14, 95.]

    34. [34]

      (34) Wang, H.; Zhao, F. Q.; Gao, H. X.; Li, S. W.; Hao, H. X. Chin. J. Energ. Mater. 2006, 14, 45. [王晗,赵凤起, 高红旭,李上文,郝海霞.含能材料, 2006, 14, 45.]

    35. [35]

      (35) Hong, W. L.; Liu, J. H.; Zhao, F. Q.; Li, Y. M.; Luo, Z. K. Acta Chim. Sin. 2005, 63, 249. [洪伟良, 刘剑洪,赵凤起, 李玉梅,罗仲宽. 化学学报, 2005, 63, 249.]

    36. [36]

      (36) Hong, L.W.; Li, L. L.; Zhao, F. Q.; Tian, D. Y.; Liu, J. H.;Zhang, P. X. J. Solid Rocket. Technol. 2007, 30, 135. [洪良伟,李琳琳, 赵凤起,田德余, 刘剑洪,张陪新. 固体火箭, 2007, 30,135.]

    37. [37]

      (37) Hong, L. W.; Zhao, F. Q.; Liu, J. H.; Tian, D. Y.; Luo, Z. K.;Chen, P.; Luo, Y. Chin. J. Inorg. Chem. 2004, 20, 996. [洪良伟, 赵凤起,刘剑洪, 田德余,罗仲宽,陈沛,罗阳.无机化学学报, 2004, 20, 996.]

    38. [38]

      (38) Yi, J. H.; Zhao, F. Q.; Gao, H. X.; Xu, S. Y.; Wang, M. C.; Hu,R. Z. J. Hazard. Mater. 2008, 153, 261. doi: 10.1016/j.jhazmat.2007.08.064


  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(548)
  • Abstract views(1277)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return