Citation: GAO Yun-Yan, CAO Lu, OU Zhi-Ze, CHEN Chen, LI Yi, WANG Xue-Song. Synthesis and Characterization of a Cu(I) Complex of Dipyrido[3,2-a:2’,3’-c]-7-aza-phenazine and Its Interaction with DNA[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2162-2172. doi: 10.3866/PKU.WHXB201308152 shu

Synthesis and Characterization of a Cu(I) Complex of Dipyrido[3,2-a:2’,3’-c]-7-aza-phenazine and Its Interaction with DNA

  • Received Date: 20 June 2013
    Available Online: 15 August 2013

    Fund Project: 国家自然科学基金(21073143) (21073143)基金(Z2009-1-71002, Z2009-1-71006) (Z2009-1-71002, Z2009-1-71006)西北工业大学基础研究基金(JC200822, JC20100239) (JC200822, JC20100239)

  • A 1,10-phenanthroline dipyrido[3,2-a:2',3'-c]-7-aza-phenazine derivative (dpapz) and its Cu(I) complex [Cu(dpapz)2]PF6 are prepared and characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FTIR), and high resolution electrospray ionization mass spectrometry (HR ESI-MS). The interactions of dpapz and [Cu(dpapz)2]PF6 with calf thymus DNA (CT DNA) are studied by ultraviolet-visible spectroscopy (UV-Vis), fluorescence spectroscopy, DNA melting temperature, and cyclic voltammetry. When the ligand dpapz interacts with DNA, there is no red shift of the absorption peak and only a small hypochromic (<30%) effect on the absorption spectra. In addition, the interaction leads to a slight increase in the melting temperature of DNA (ΔTm=7.8 ℃). All the results indicate that groove binding is the primary interaction of dpapz with CT DNA. However, when [Cu(dpapz)2]PF6 interacts with DNA, there is a red shift of the absorption peak (2-3 nm), a large hypochromic effect on the absorption spectrum (>50%), and a significant increase in the melting temperature of DNA (ΔTm=11.1 ℃), indicating that [Cu(dpapz)2]PF6 electrostatically associates with DNA in a partial intercalation manner. The complexes of dpapz and [Cu(dpapz)2]PF6 with DNA are further confirmed by ethidium bromide (EB) fluorescence assays and cyclic voltammetry. The association constants for dpapz and [Cu(dpapz)2]PF6 with CT DNA are 2.88×105 and 5.32×105 mol·L-1, respectively. The yield of singlet oxygen produced by [Cu(dpapz)2]PF6 is similar to that of dpapz, while the yield of superoxide anion radical for [Cu(dpapz)2]PF6 is lower than that of dpapz. Active oxygen quencher experiments indicate that singlet oxygen, superoxide anion radicals, and hydrogen radicals all take part in the photocleavage of DNA by [Cu(dpapz)2]PF6 and dpapz. However, [Cu(dpapz)2]PF6 causes more photodamage of plasmid DNA than does dpapz, most likely because of its higher affinity for DNA.

  • 加载中
    1. [1]

      (1) Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467. doi: 10.1021/cr980421n

    2. [2]

      (2) Reedijk, J. Chem. Rev. 1999, 99, 2499. doi: 10.1021/cr980422f

    3. [3]

      (3) Giaccone, G.; Herbst, R. S.; Mane ld, C.; Scagliotti, G.;Rosell, R.; Miller, V. J. Clin. Oncol. 2004, 22, 777. doi: 10.1200/JCO.2004.08.001

    4. [4]

      (4) Frausto da Silva, J. J. R.; Williams, R. J. P. The Biological Chemistry of the Elements; Clarendon: Oxford, U. K., 1991.

    5. [5]

      (5) Yoshida, D.; Ikeda, Y.; Nakazawa, S. J. Neurooncol. 1993, 16,109. doi: 10.1007/BF01324697

    6. [6]

      (6) Coates, R. J.; Weiss, N. S.; Daling, J. R.; Rettmer, R. L.;Warnick, G. R. Cancer Res. 1989, 49, 4353.

    7. [7]

      (7) Gupta, S. K.; Shukla, V. K.; Vaidya, M. P.; Roy, S. K. J. Surg. Oncol. 1993, 52, 172.

    8. [8]

      (8) swami, T. K.; Roy, M.; Nethaji, M.; Chakravarty, A. R.Organometallics 2009, 28, 1992. doi: 10.1021/om900012b

    9. [9]

      (9) Lahiri, D.; Bhowmick, T.; Pathak, B.; Shameema, O.; Patra, A.K.; Ramakumar, S.; Chakravarty, A. R. Inorg. Chem. 2009, 48,339. doi: 10.1021/ic800806j

    10. [10]

      (10) Armitage, B. Chem. Rev. 1998, 98, 1171. doi: 10.1021/cr960428+

    11. [11]

      (11) Sun, H.; Yu, Z.; Yang, W. Q.; He, W. J.; Guo, Z. J. Chem. J. Chin. Univ. 2011, 32, 437. [孙辉,余臻,杨玮琪, 何卫江,郭子建. 高等学校化学学报, 2011, 32, 437.]

    12. [12]

      (12) Sathyadevi, P.; Krishnamoorthy, P.; Butorac, R. R.; Cowley, A.H.; Dharmaraj, N. Metallomics 2012, 4, 498. doi: 10.1039/c2mt00004k

    13. [13]

      (13) Robertazzi, A.; Vargiu, A. V.; Magistrato, A.; Ruggerone, P.;Carloni, P.; de Hoog, P.; Reedijk, J. J. Phys. Chem. B 2009, 113,10881. doi: 10.1021/jp901210g

    14. [14]

      (14) Sigman, D. Accounts Chem. Res. 1986, 19, 180. doi: 10.1021/ar00126a004

    15. [15]

      (15) Sathiyaraj, S.; Sampath, K.; Butcher, R. J.; Pallepogu, R.;Jayabalakrishnan, C. Eur. J. Med. Chem. 2013, 64, 81. doi: 10.1016/j.ejmech.2013.03.047

    16. [16]

      (16) Veal, J. M.; Rill, R. L. Biochemistry 1991, 30, 1132. doi: 10.1021/bi00218a035

    17. [17]

      (17) Tsiaggalia, M. A.; Andreadou, E. G.; Hatzidimitriou, A. G.;Pantazaki, A. A.; Aslanidis, P. J. Inorg. Biochem. 2013, 121,121. doi: 10.1016/j.jinorgbio.2013.01.001

    18. [18]

      (18) Pan, C. Q.; Johnson, R. C.; Sigman, D. S. Biochemistry 1996,35, 4326. doi: 10.1021/bi952040z

    19. [19]

      (19) Xia, S. F.; Lu, X. M. Chem. Bull. 2011, 74, 1069. [夏寺丰, 鲁晓明. 化学通报, 2011, 74, 1069.]

    20. [20]

      (20) Chen, X.; Gao, F.; Yang, W.; Sun, J.; Zhou, Z.; Ji, L. Inorg. Chim. Acta 2011, 378, 140. doi: 10.1016/j.ica.2011.08.047

    21. [21]

      (21) Tan, L.; Xiao, Y.; Liu, X.; Zhang, S. Spectrochim. Acta, Part A2009, 73, 858. doi: 10.1016/j.saa.2009.04.021

    22. [22]

      (22) Wu, B. Y.; Gao, L. H.; Wang, K. Z. Chem. J. Chin. Univ. 2005,26, 1206. [吴宝燕, 高丽华,王科志. 高等学校化学学报,2005, 26, 1206.]

    23. [23]

      (23) Paw, W.; Eisenberg, R. Inorg. Chem. 1997, 36, 2287. doi: 10.1021/ic9610851

    24. [24]

      (24) Karlsson, H. J.; Eriksson, M.; Perzon, E.; Akerman, B.; Lincoln,P.; Westman, G. Nucleic Acids Res. 2003, 31, 6227. doi: 10.1093/nar/gkg821

    25. [25]

      (25) Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; da, Y.; Masumizu, T.; Nagano, T. J. Am. Chem. Soc. 2003,125, 12803. doi: 10.1021/ja0355574

    26. [26]

      (26) Miyamoto, S.; Martinez, G. R.; Martins, A. P. B.; Medeiros, M.H. G.; Mascio, P. D. J. Am. Chem. Soc. 2003, 125, 4510. doi: 10.1021/ja029262m

    27. [27]

      (27) Rondelez, Y.; Bertho, G.; Reinaud, O. Angew. Chem. Int. Edit.2002, 41, 1044.

    28. [28]

      (28) Yang, S. P.; Han, L. J.; Pan, Y.; Wu, Z. M.; He, X. R.; Chen, L.J. Acta Chim. Sin. 2012, 70, 519. [杨树平, 韩立军, 潘燕,吴争鸣, 何欣然, 陈丽娟. 化学学报, 2012, 70, 519.] doi: 10.6023/A1109102

    29. [29]

      (29) Nishikawa, M.; Nomoto, K.; Kume, S.; Nishihara, H. J. Am. Chem. Soc. 2012, 134, 10543. doi: 10.1021/ja3028873

    30. [30]

      (30) Ruthkosky, M.; Kelly, C. A.; Castellano, F. N.; Meyer, G. J.Coord. Chem. Rev. 1998, 171, 309. doi: 10.1016/S0010-8545(98)90045-5

    31. [31]

      (31) Rader, R. A.; McMillin, D. R.; Buckner, M. T.; Matthews, T. G.;Casadonte, D. J.; Lengel, R. K.;Whittaker, S. B.; Darmon, L.M.; Lytle, F. E. J. Am. Chem. Soc. 1981, 103, 5906. doi: 10.1021/ja00409a048

    32. [32]

      (32) Jin, J.; Xu, X. T.; Cong, S. M.; Li, L.; Zhang, G. N.; Niu, S. Y.Acta Phys. -Chim. Sin. 2012, 28, 2549. [金晶, 徐晓婷,丛盛美,李雷,张广宁, 牛淑云.物理化学学报, 2012, 28, 2549.]doi: 10.3866/PKU.WHXB201207311

    33. [33]

      (33) Díaz, R.; Reyes, O.; Francois, A.; Leiva, A. M.; Loeb, B.Tetrahedron Lett. 2001, 42, 6463. doi: 10.1016/S0040-4039(01)01289-8

    34. [34]

      (34) Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.;Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1989, 111, 3053.

    35. [35]

      (35) Waring, M. J. J. Mol. Biol. 1965, 13, 269. doi: 10.1016/S0022-2836(65)80096-1

    36. [36]

      (36) Deng, H.; Cai, J.; Xu, H.; Zhang, H.; Ji, L. Dalton Trans. 2003,325.

    37. [37]

      (37) Ivanov, V. I.; Minchenkova, L. E.; Schyolkina, A. K.Biopolymers 1973, 12, 89.

    38. [38]

      (38) Yin, W. F.; Ou, Z. Z.; Gao, Y. Y.; Hao, P.; Guo, C. L.; Wang, Z.L. Acta Chim. Sin. 2010, 68, 1343. [殷卫峰,欧植泽, 高云燕,郝平,郭创龙,王中丽. 化学学报, 2010, 68, 1343.]

    39. [39]

      (39) Childs, L. J.; Malina, J.; Rolfsnes, B. E.; Pascu, M.; Prieto, M.J.; Broome, M. J.; Rodger, P. M.; Sletten, E.; Moreno, E. V.;Rodger, A.; Hannon, M. J. Chem. -Eur. J. 2006, 12, 4919.

    40. [40]

      (40) Han, M.; Duan, Z.; Hao, Q.; Zheng, S.; Wang, K. J. Phys. Chem. C 2007, 111, 16577. doi: 10.1021/jp075194k

    41. [41]

      (41) Sheng, X.; Guo, X.; Lu, X.; Lu, G.; Shao, Y.; Liu, F.; Xu, Q.Bioconjugate Chem. 2008, 19, 490. doi: 10.1021/bc700322w

    42. [42]

      (42) Tietze, M.; Beuchle, A.; Lamla, I.; Orth, N.; Dehler, M.;Greiner, G.; Beifuss, U. ChemBioChem 2003, 4, 333. doi: 10.1002/cbic.v4:4

    43. [43]

      (43) Pellegrin, Y.; Sandroni, M.; Blart, E.; Planchat, A.; Evain, M.;Bera, N. C.; Kayanuma, M.; Sliwa, M.; Rebarz, M.; Poizat, O.;Daniel, C.; Odobel, F. Inorg. Chem. 2011, 50, 11309. doi: 10.1021/ic2006343

    44. [44]

      (44) Zhou, Y. Z.; Feng, J. N.; Yue, L.; Tu, S. J.; Zhu, H. J. Acta Chim. Sin. 2009, 67, 1297. [周荫庄, 冯静楠,岳蕾,屠淑洁, 朱惠菊.化学学报, 2009, 67, 1297.]

    45. [45]

      (45) Pang, D.; Abruna, H. D. Anal. Chem. 1998, 70, 3162. doi: 10.1021/ac980211a

    46. [46]

      (46) Sun, Y.; Hou, Y.; Zhou, Q.; Lei, W.; Chen, J.; Wang, X.; Zhang,B. Inorg. Chem. 2010, 49, 10108. doi: 10.1021/ic101391x

    47. [47]

      (47) Carter, M. T.; Rodriguez, M.; Bard, A. J. J. Am. Chem. Soc.1989, 111, 8901. doi: 10.1021/ja00206a020

    48. [48]

      (48) Shen, L.; Ji, H. F.; Zhang, H. Y. J. Photochem. Photobiol. A: Chem. 2006, 180, 65. doi: 10.1016/j.jphotochem.2005.09.019

    49. [49]

      (49) Neves, A.; Terenzi, H.; Horner, R.; Horn, A.; Szpoganicz, B.;Sugai, J. Inorg. Chem. Commun. 2001, 4, 388. doi: 10.1016/S1387-7003(01)00233-7

    50. [50]

      (50) Saito, I.; Takayama, M.; Sugiyama, H.; Nakatani, K.; Tsuchida,A.; Yamamoto, M. J. Am. Chem. Soc. 1995, 117, 6406.


  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    8. [8]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    13. [13]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    20. [20]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

Metrics
  • PDF Downloads(620)
  • Abstract views(845)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return