Citation: CHEN Xue-Song, LU Peng-Fei, DONG Yu-Hui, XIE Ju. Theoretical Study of Calix[4]pyrrole Complexes with Halide and AmmoniumIons[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2187-2197. doi: 10.3866/PKU.WHXB201308142 shu

Theoretical Study of Calix[4]pyrrole Complexes with Halide and AmmoniumIons

  • Received Date: 21 May 2013
    Available Online: 14 August 2013

    Fund Project: 国家自然科学基金(21103147)资助项目 (21103147)

  • Density functional theory M06-2X/6-31G(d, p) was used on complexes of calix[4]pyrrole (CP) with halide anions (X-=F-, Cl-, Br-) and NH4+-X- ion-pairs. Geometries, binding energies, natural bond orbital analysis, and multifunctional wave function analysis (Multiwfn) were presented in detail. The results indicated that the interaction between the calix[4]pyrrole and halide anions mainly involved hydrogen (H)-bonds. Long-range van der Waals forces and steric effects were determined in the CP-Cl- and CP-Br- systems by Multiwfn analysis. Calix[4]pyrrole forms stable complexes with NH4+-X- ion-pairs mainly through H-bonds and electrostatic interactions, as well as via cation-π interactions. The 2:1 complexes of CP and anions or ion-pairs were also considered theoretically, but 2:1 is not the dominant stoichiometry relative to the 1:1 complexes. The current study also demonstrates that calix[4]pyrrole functions not only as an anion receptor, but also as a od ion-pair receptor, especially in cases involving fluoride ions.

  • 加载中
    1. [1]

      (1) Gale, P. A.; Anzenbacher, P.; Sessler, J. L. Coord. Chem. Rev.2001, 222, 57. doi: 10.1016/S0010-8545(01)00346-0

    2. [2]

      (2) Allen, W. E.; Gale, P. A.; Brown, C. T.; Lynch, V. M.; Sessler, J.L. J. Am. Chem. Soc. 1996, 118, 12471. doi: 10.1021/ja9632217

    3. [3]

      (3) Rambo, B. M.; Sessler, J. L. Chem. Eur. J. 2011, 17, 4946. doi: 10.1002/chem.v17.18

    4. [4]

      (4) Cafeo, G.; Carbotti, G.; Cuzzola, A.; Fabbi, M.; Ferrini, S.;Kohnke, F. H.; Papanikolaou, G.; Plutino, M. R.; Rosano, C.;White, A. J. P. J. Am. Chem. Soc. 2013, 135, 2514 .

    5. [5]

      (5) Blas, J. R.; Marquez, M.; Sessler, J. L.; Luque, F. J.; Orozco, M.J. Am. Chem. Soc. 2002, 124, 12796. doi: 10.1021/ja020318m

    6. [6]

      (6) Wu, Y. D.; Wang, D. F.; Sessler, J. L. J. Org. Chem. 2001, 66,3739. doi: 10.1021/jo0016273

    7. [7]

      (7) Pichierri, F. J. Mol. Struct. 2002, 581, 117.

    8. [8]

      (8) Wintergerst, M. P.; Levitskaia, T. G.; Moyer, B. A.; Sessler, J.L.; Delmau, L. H. J. Am. Chem. Soc. 2008, 130, 4129.

    9. [9]

      (9) Kriz, J.; Dybal, J.; Makrlik, E.; Sedlakova, Z. J. Chem. Phys.2012, 400, 19.

    10. [10]

      (10) Xia, Y.; Wang, X.; Zhang, Y.; Luo, B.; Liu, Y. Journal of Molecular Modeling 2012, 18 (6), 2291.

    11. [11]

      (11) Blas, J. R.; Marquez, M.; Sessler, J. L.; Luque, F. J.; Orozco, M.Chem. Eur. J. 2007, 13, 1108.

    12. [12]

      (12) Zhao, Y.; Truhlar, D. G. Accounts Chem. Res. 2008, 41, 157.doi: 10.1021/ar700111a

    13. [13]

      (13) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x

    14. [14]

      (14) Sun, T.; Wang, Y. B. Acta Phys. -Chim. Sin. 2011, 27 (11), 2553.[孙涛, 王一波.物理化学学报, 2011, 27 (11), 2553.] doi: 10.3866/PKU.WHXB20111017

    15. [15]

      (15) Weinhold, F.; Schleyer, P. v. R.; Clark, T.; Gasteiger, J.;Kollman, P. A.; SchaeferI, H. F., III; Schreiner, P. R.Encyclopedia of Computational Chemistry; John Wiley& Sons:Chichester, UK, 1998; Vol. 3, pp 1792-1811.

    16. [16]

      (16) Frish, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 09,Revision B1; Gaussian Inc.: Wallingford, CT, 2010.

    17. [17]

      (17) Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia,J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498.

    18. [18]

      (18) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.

    19. [19]

      (19) Chen, P. Q.; Sun, H. W.; Chen, L.; Shen, R. X.; Yuan, M. X.;Lai, C. M. Chem. J. Chin. Univ. 2004, 25 (12), 2290. [陈沛全,孙宏伟,陈兰,沈荣欣, 袁满雪,赖城明.高等学校化学学报,2004, 25 (12), 2290.]

    20. [20]

      (20) Liu, K.; Guo, Y.; Xu, J.; Shao, S. J.; Jiang, S. X. Chinese Chemical Letters 2006, 17 (3), 387.


  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    3. [3]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    6. [6]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    9. [9]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    14. [14]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(648)
  • Abstract views(938)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return