Citation: WEI Jing, CHENG Wen-Dan. Nonlinear Optical Properties:Second Harmonic Generation for Aromatic Amino Acids[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2215-2220. doi: 10.3866/PKU.WHXB201308141
-
The geometrical structures of a series of neutral, protonated, and deprotonated aromatic amino acids (Phe, [Phe―H]-, PheH+, Tyr, [Tyr―H]-, TyrH+, Trp, [Trp―H]-, and TrpH+) were optimized using density functional theory (DFT)-B3LYP with a 6-31G* basis set. Based on the optimized structures, the excited state properties were studied using time-dependent DFT at the B3LYP/6-31G* level. We calculated the second-order polarizabilities for second harmonic generation with the sum-over-states method. We examined the origins of the nonlinear optical responses and determined the cause for the variation in the second-order polarizabilities. Our calculations show that the second-order polarizabilities for protonated, and deprotonated aromatic amino acids are much higher than those for the neutral aromatic amino acids, with the order Phe < PheH+ < [Phe―H]- and Tyr < TyrH+ < [Tyr―H]-. By analyzing their electronic origins, we find that charge transitions in the side chains (benzene, phenol, and indole) make the main contributions to the second-order polarizability for neutral aromatic amino acids. For protonated and deprotonated aromatic amino acids, π→π* charge transfers within indole rings, and charge transfers within amino groups and the carboxyl groups attached to alpha-carbon atoms make almost identical contributions to the second-order polarizability.
-
-
[1]
(1) Franken, P. A.; Weinreich, G.; Peters, C. W.; Hill, A. E. Phys. Rev. Lett. 1961, 7, 118. doi: 10.1103/PhysRevLett.7.118
-
[2]
(2) Fine, S.; Hansen, W. P. Applied Optics 1971, 10, 2350. doi: 10.1364/AO.10.002350
-
[3]
(3) Freund, I.; Deutsch, M.; Sprecher, A. Biophys. J. 1986, 50,693. doi: 10.1016/S0006-3495(86)83510-X
-
[4]
(4) Campagnola, P. J.; Wei, M. D.; Lewis, A.; Loew, L. M. Biophys. J. 1999, 77, 3341. doi: 10.1016/S0006-3495(99)77165-1
-
[5]
(5) Campagnola, P. J.; Millard, A. C.; Terasaki, M.; Hoppe, P. E.;Malone, C. J.; Mohler, W. A. Biophys. J. 2002, 82, 493. doi: 10.1016/S0006-3495(02)75414-3
-
[6]
(6) Lin, X. S.; Pan, L.; Hu, J. Y.; Ma, H.; Chen, D. Y. Progress in Biochemistry and Biophysics 2004, 31, 83. [林幸笋,潘琳,胡金云,马辉,陈瓞延. 生物化学与生物物理进展, 2004, 31,83.]
-
[7]
(7) Wang, Y.; Bao, J.; Sheng, X.; Li, P.; Ma, H. Acta Laser Biology Sinica 2005, 14, 274. [王毅,鲍进,盛巡,李萍,马辉.激光生物学报, 2005, 14, 274.]
-
[8]
(8) Willians, R. M.; Zipfel, W. R.; Webb, W. W. Biophys. J. 2005,88, 1377. doi: 10.1529/biophysj.104.047308
-
[9]
(9) Liu, N. R.; Qiu, Y. S. Acta Laser Biology Sinica 2007, 16, 620.[刘嫩容, 丘怡申. 激光生物学报, 2007, 16, 620.]
-
[10]
(10) Shcheslavskiy, V. I.; Petrov, G. I.; Yakovlev, V. V. Chem. Phys. Lett. 2005, 402, 170. doi: 10.1016/j.cplett.2004.12.023
-
[11]
(11) Kim, B. M.; Eichler, J.; Da Silva, L. B. Applied Optics 1999, 38,7145. doi: 10.1364/AO.38.007145
-
[12]
(12) Kim, B. M.; Eichler, J.; Reiser, K. M.; Rubenchik, A. M.; DaSilva, L. B. Lasers Surg. Med. 2000, 27, 329.
-
[13]
(13) Guthmuller, J.; Simon, D. J. Phys. Chem. A 2006, 110,9967. doi: 10.1021/jp063053x
-
[14]
(14) Duboisset, J.; Matar, G.; Russier-Antoine, I.; Benichou, E.;Bachelier, G.; Jonin, C.; Ficheux, D.; Besson, F.; Brevet, P. F.J. Phys. Chem. B 2010, 114, 13861. doi: 10.1021/jp105554s
-
[15]
(15) Alparone, A. Chem. Phys. Lett. 2011, 514, 21. doi: 10.1016/j.cplett.2011.08.010
-
[16]
(16) Alparone, A. Comput. Theor. Chem. 2011, 976, 188. doi: 10.1016/j.comptc.2011.08.025
-
[17]
(17) Rativa, D.; da Silva, S. J. S.; Del Nero, J.; mes, A. S. L.; deAraujo, R. E. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, 2665. doi: 10.1364/JOSAB.27.002665
-
[18]
(18) Ying, X.; Li, H. G.; Liu, H. Y.; Wang, H.; Ji, L. N. Acta Phys. -Chim. Sin. 2013, 29, 731. [应晓, 李红刚, 刘海洋,王慧,计亮年.物理化学学报, 2013, 29, 731.] doi: 10.3866/PKU.WHXB201302044
-
[19]
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03,Revision D.02; Gaussian Inc.: Wallingford, CT, 2004.
-
[20]
(20) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[21]
(21) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37,785. doi: 10.1103/PhysRevB.37.785
-
[22]
(22) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.1989, 157, 200. doi: 10.1016/0009-2614(89)87234-3
-
[23]
(23) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997. doi: 10.1103/PhysRevLett.52.997
-
[24]
(24) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256,454. doi: 10.1016/0009-2614(96)00440-X
-
[25]
(25) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.1998, 109, 8218. doi: 10.1063/1.477483
-
[26]
(26) Orr, B. J.; Ward, J. F. Mol. Phys. 1971, 20, 513. doi: 10.1080/00268977100100481
-
[27]
(27) Bishop, D. M. J. Chem. Phys. 1994, 100, 6535. doi: 10.1063/1.467062
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[4]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[5]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[6]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[7]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[8]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[9]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[10]
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
-
[11]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[13]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[14]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[15]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[16]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[17]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[18]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[19]
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
-
[20]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[1]
Metrics
- PDF Downloads(475)
- Abstract views(643)
- HTML views(3)