Citation: CAO Guo-Jin, ZHENG Wei-Jun. Structures, Stabilities and Physicochemical Properties of Nucleobase Tautomers[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2135-2147. doi: 10.3866/PKU.WHXB201308011 shu

Structures, Stabilities and Physicochemical Properties of Nucleobase Tautomers

  • Received Date: 6 June 2013
    Available Online: 1 August 2013

    Fund Project: 国家自然科学基金(21273246)资助项目 (21273246)

  • Nucleobases in DNA and RNA are important building blocks of the genetic codes and are critical in transferring genetic information. In general, nucleobases have many tautomers; but in DNA and RNA molecules they are mainly presented in the most stable forms. Uncommon tautomers can cause mispairing of base pairs to form irregular structures of DNA and RNA that lead to spontaneous mutations during replication. Thus, systematic studies of nucleobase tautomers are very important in understanding the structures and the characteristics of DNA and RNA. This review summarizes the experimental and theoretical studies in the literature and our density functional calculations on all the nucleobase tautomers. The relative energies of nucleobase tautomers and the structures of their lowest-energy tautomers fromour calculations are in od agreement with the experimental values in the literature. In addition, we also summarize the information of electron affinities, ionization potentials, and proton affinities of nucleobases reported in the literature.

  • 加载中
    1. [1]

      (1) Blackburn, G. M. Nucleic Acids in Chemistry and Biology;Royal Society of Chemistry: Cambridge, 2006; p 13.

    2. [2]

      (2) Wojnarowska, Z.; Paluch, M.; Wlodarczyk, P.; Dulski, M.;Wrzalik, R.; Roland, C. M. J. Phys. Chem. Lett. 2012, 3,2288. doi: 10.1021/jz300541t

    3. [3]

      (3) Lee, H.; Popodi, E.; Tang, H. X.; Foster, P. L. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E2774.

    4. [4]

      (4) Lippert, B.; Gupta, D. Dalton Transactions 2009, 4619.

    5. [5]

      (5) Ai, H. Q.; Chen, J. P.; Zhang, C. J. Phys. Chem. B 2012, 116,13624. doi: 10.1021/jp308937k

    6. [6]

      (6) Neidle, S. Principles of Nucleic Acid Structure; Elsevier:London, 2008; p 1.

    7. [7]

      (7) van Mourik, T.; Danilov, V. I.; Dailidonis, V. V.; Kurita, N.;Wakabayashi, H.; Tsukamoto, T. Theor. Chem. Acc. 2010, 125,233. doi: 10.1007/s00214-009-0630-0

    8. [8]

      (8) Beak, P.;White, J. M. J. Am. Chem. Soc. 1982, 104, 7073. doi: 10.1021/ja00389a032

    9. [9]

      (9) Ferenczy, G.; Harsányi, L.; Rozsondai, B.; Hargittai, I. J. Mol. Struct. 1986, 140, 71. doi: 10.1016/0022-2860(86)80148-X

    10. [10]

      (10) Fujii, M.; Tamura, T.; Mikami, N.; Ito, M. Chem. Phys. Lett.1986, 126, 583. doi: 10.1016/S0009-2614(86)80178-6

    11. [11]

      (11) Tsuchiya, Y.; Tamura, T.; Fujii, M.; Ito, M. J. Phys. Chem. 1988,92, 1760. doi: 10.1021/j100318a013

    12. [12]

      (12) Brown, R. D.; dfrey, P. D.; McNaughton, D.; Pierlot, A. P.J. Am. Chem. Soc. 1988, 110, 2329. doi: 10.1021/ja00215a069

    13. [13]

      (13) Dougherty, D.;Wittel, K.; Meeks, J.; McGlynn, S. P. J. Am. Chem. Soc. 1976, 98, 3815. doi: 10.1021/ja00429a013

    14. [14]

      (14) Brady, B. B.; Peteanu, L. A.; Levy, D. H. Chem. Phys. Lett.1988, 147, 538. doi: 10.1016/0009-2614(88)80264-1

    15. [15]

      (15) Kubota, M.; Kobayashi, T. J. Electron. Spectrosc. Relat. Phenom. 1996, 82, 61. doi: 10.1016/S0368-2048(96)03047-2

    16. [16]

      (16) Colarusso, P.; Zhang, K.; Guo, B.; Bernath, P. F. Chem. Phys. Lett. 1997, 269, 39. doi: 10.1016/S0009-2614(97)00245-5

    17. [17]

      (17) Szczesniak, M.; Nowak, M. J.; Rostkowska, H.; Szczepaniak,K.; Person, W. B.; Shugar, D. J. Am. Chem. Soc. 1983, 105,5969. doi: 10.1021/ja00357a002

    18. [18]

      (18) Chin, S.; Scott, I.; Szczepani, K.; Person, W. B. J. Am. Chem. Soc. 1984, 106, 3415. doi: 10.1021/ja00324a006

    19. [19]

      (19) Basch, H.; Garmer, D. R.; Jasien, P. G.; Krauss, M.; Stevens, W.J. Chem. Phys. Lett. 1989, 163, 514. doi: 10.1016/0009-2614(89)85179-6

    20. [20]

      (20) Bodor, N.; Dewar, M. J. S.; Harget, A. J. J. Am. Chem. Soc.1970, 92, 2929. doi: 10.1021/ja00713a001

    21. [21]

      (21) Czermiński, R.; Lesyng, B.; Pohorille, A. Int. J. Quantum Chem.1979, 16, 605.

    22. [22]

      (22) Scanlan, M. J.; Hillier, I. H. J. Am. Chem. Soc. 1984, 106,3737. doi: 10.1021/ja00325a005

    23. [23]

      (23) Saunders, M.; Webb, G.; Tute, M. J. Mol. Struct. 1987, 158,69. doi: 10.1016/0022-2860(87)80005-4

    24. [24]

      (24) Katritzky, A. R.; Karelson, M. J. Am. Chem. Soc. 1991, 113,1561. doi: 10.1021/ja00005a017

    25. [25]

      (25) Leszczynski, J. J. Phys. Chem. 1992, 96, 1649. doi: 10.1021/j100183a029

    26. [26]

      (26) Boughton, J. W.; Pulay, P. Int. J. Quantum Chem. 1993, 47, 49.

    27. [27]

      (27) Estrin, D. A.; Paglieri, L.; Corongiu, G. J. Phys. Chem. 1994,98, 5653. doi: 10.1021/j100073a014

    28. [28]

      (28) Tian, S. X.; Zhang, C. F.; Zhang, Z. J.; Chen, X. J.; Xu, K. Z.Chem. Phys. 1999, 242, 217. doi: 10.1016/S0301-0104(99)00009-9

    29. [29]

      (29) Hobza, P.; Sponer, J. Chem. Rev. 1999, 99, 3247. doi: 10.1021/cr9800255

    30. [30]

      (30) Jasien, P. G.; Fitzgerald, G. J. Chem. Phys. 1990, 93, 2554. doi: 10.1063/1.458894

    31. [31]

      (31) Les, A.; Adamowicz, L. J. Phys. Chem. 1990, 94, 7021. doi: 10.1021/j100381a020

    32. [32]

      (32) Kryachko, E. S.; Nguyen, M. T.; Zeegers-Huyskens, T. J. Phys. Chem. A 2001, 105, 1288. doi: 10.1021/jp001031j

    33. [33]

      (33) Kryachko, E. S.; Nguyen, M. T.; Zeegers-Huyskens, T. J. Phys. Chem. A 2001, 105, 1934. doi: 10.1021/jp0019411

    34. [34]

      (34) Ozeki, K.; Sakabe, N.; Tanaka, J. Acta Crystallogr., Sect. B: Struct. Sci. 1969, 25, 1038. doi: 10.1107/S0567740869003505

    35. [35]

      (35) Brown, R. D.; dfrey, P. D.; McNaughton, D.; Pierlot, A. P.J. Chem. Soc., Chem. Commun. 1989, 37.

    36. [36]

      (36) Morsy, M.; Al-Somali, A.; Suwaiyan, A. J. Phys. Chem. B 1999,103, 11205. doi: 10.1021/jp990858e

    37. [37]

      (37) Rejnek, J.; Hanus, M.; Kabelac, M.; Ryjacek, F.; Hobza, P.Phys. Chem. Chem. Phys. 2005, 7, 2006. doi: 10.1039/b501499a

    38. [38]

      (38) Ha, T. K.; Gunthard, H. H. J. Am. Chem. Soc. 1993, 115, 11939.doi: 10.1021/ja00078a036

    39. [39]

      (39) Ueda, T.; Fox, J. J. J. Am. Chem. Soc. 1963, 85, 4024. doi: 10.1021/ja00907a026

    40. [40]

      (40) Dreyfus, M.; Bensaude, O.; Dodin, G.; Dubois, J. E. J. Am. Chem. Soc. 1976, 98, 6338. doi: 10.1021/ja00436a045

    41. [41]

      (41) Yu, C.; Peng, S.; Akiyama, I.; Lin, J.; LeBreton, P. R. J. Am. Chem. Soc. 1978, 100, 2303. doi: 10.1021/ja00476a006

    42. [42]

      (42) Szczesniak, M.; Szczepaniak, K.; Kwiatkowski, J.; KuBulat, K.;Person, W. J. Am. Chem. Soc. 1988, 110, 8319. doi: 10.1021/ja00233a006

    43. [43]

      (43) Nowak, M. J.; Lapinski, L.; Fulara, J. Spectrochim. Acta, Part A: Mol. Spectrosc. 1989, 45, 229. doi: 10.1016/0584-8539(89)80129-1

    44. [44]

      (44) Brown, R. D.; dfrey, P. D.; McNaughton, D.; Pierlot, A. P.J. Am. Chem. Soc. 1989, 111, 2308. doi: 10.1021/ja00188a058

    45. [45]

      (45) Nir, E.; Müller, M.; Grace, L. I.; de Vries, M. S. Chem. Phys. Lett. 2002, 355, 59. doi: 10.1016/S0009-2614(02)00180-X

    46. [46]

      (46) Tomic, K.; Tatchen, J.; Marian, C. M. J. Phys. Chem. A 2005,109, 8410. doi: 10.1021/jp051510o

    47. [47]

      (47) Fogarasi, G. J. Mol. Struct. 1997, 413, 271.

    48. [48]

      (48) Colominas, C.; Luque, F. J.; Orozco, M. J. Am. Chem. Soc.1996, 118, 6811. doi: 10.1021/ja954293l

    49. [49]

      (49) Kwiatkowski, J. S.; Leszczyński, J. J. Phys. Chem. 1996, 100,941. doi: 10.1021/jp9514640

    50. [50]

      (50) Sponer, J.; Hobza, P. J. Phys. Chem. 1994, 98, 3161. doi: 10.1021/j100063a019

    51. [51]

      (51) uld, I. R.; Burton, N. A.; Hall, R. J.; Hillier, I. H. J. Mol. Struct: Theochem 1995, 331, 147. doi: 10.1016/0166-1280(94)03887-Q

    52. [52]

      (52) Les, A.; Adamowicz, L.; Bartlett, R. J. J. Phys. Chem. 1989, 93,4001. doi: 10.1021/j100347a028

    53. [53]

      (53) Kobayashi, R. J. Phys. Chem. A 1998, 102, 10813. doi: 10.1021/jp9829546

    54. [54]

      (54) Ha, T. K.; Keller, H. J.; Gunde, R.; Gunthard, H. H. J. Phys. Chem. A 1999, 103, 6612. doi: 10.1021/jp984564p

    55. [55]

      (55) Fogarasi, G. J. Phys. Chem. A 2002, 106, 1381. doi: 10.1021/jp013067x

    56. [56]

      (56) van Mourik, T.; Benoit, D. M.; Price, S. L.; Clary, D. C. Phys. Chem. Chem. Phys. 2000, 2, 1281. doi: 10.1039/a909183a

    57. [57]

      (57) Sambrano, J. R.; de Souza, A. R.; Queralt, J. J.; Andrés, J.Chem. Phys. Lett. 2000, 317, 437. doi: 10.1016/S0009-2614(99)01394-9

    58. [58]

      (58) Kwiatkowski, J. S.; Bartlett, R. J.; Person, W. B. J. Am. Chem. Soc. 1988, 110, 2353. doi: 10.1021/ja00216a001

    59. [59]

      (59) Chenon, M. T.; Pugmire, R. J.; Grant, D. M.; Panzica, R. P.;Townsend, L. B. J. Am. Chem. Soc. 1975, 97, 4636. doi: 10.1021/ja00849a028

    60. [60]

      (60) Dreyfus, M.; Dodin, G.; Bensaude, O.; Dubois, J. E. J. Am. Chem. Soc. 1975, 97, 2369. doi: 10.1021/ja00842a011

    61. [61]

      (61) nnella, N. C.; Nakanishi, H.; Holtwick, J. B.; Horowitz, D.S.; Kanamori, K.; Leonard, N. J.; Roberts, J. D. J. Am. Chem. Soc. 1983, 105, 2050. doi: 10.1021/ja00345a063

    62. [62]

      (62) Nowak, M. J.; Lapinski, L.; Kwiatkowski, J. S.; Leszczynski, J.J. Phys. Chem. 1996, 100, 3527. doi: 10.1021/jp9530008

    63. [63]

      (63) Nowak, M. J.; Rostkowska, H.; Lapinski, L.; Kwiatkowski, J.S.; Leszczynski, J. J. Phys. Chem. 1994, 98, 2813. doi: 10.1021/j100062a015

    64. [64]

      (64) Laxer, A.; Major, D. T.; ttlieb, H. E.; Fischer, B. J. Org. Chem. 2001, 66, 5463. doi: 10.1021/jo010344n

    65. [65]

      (65) Plützer, C.; Kleinermanns, K. Phys. Chem. Chem. Phys. 2002, 4,4877. doi: 10.1039/b204595h

    66. [66]

      (66) Cohen, B.; Hare, P. M.; Kohler, B. J. Am. Chem. Soc. 2003, 125,13594. doi: 10.1021/ja035628z

    67. [67]

      (67) Vogt, N.; Dorofeeva, O. V.; Sipachev, V. A.; Rykov, A. N.J. Phys. Chem. A 2009, 113, 13816. doi: 10.1021/jp905755u

    68. [68]

      (68) Broo, A. J. Phys. Chem. A 1998, 102, 526. doi: 10.1021/jp9713625

    69. [69]

      (69) Mennucci, B.; Toniolo, A.; Tomasi, J. J. Phys. Chem. A 2001,105, 4749. doi: 10.1021/jp0045843

    70. [70]

      (70) Guerra, C. F.; Bickelhaupt, F. M.; Saha, S.; Wang, F. J. Phys. Chem. A 2006, 110, 4012. doi: 10.1021/jp057275r

    71. [71]

      (71) Hanus, M.; Kabelac, M.; Rejnek, J.; Ryjacek, F.; Hobza, P.J. Phys. Chem. B 2004, 108, 2087.

    72. [72]

      (72) Roca-Sanjuán, D.; Merchán, M.; Serrano-Andrés, L.; Rubio, M.J. Chem. Phys. 2008, 129, 095104. doi: 10.1063/1.2958286

    73. [73]

      (73) Salter, L. M.; Chaban, G. M. J. Phys. Chem. A 2002, 106,4251. doi: 10.1021/jp014620d

    74. [74]

      (74) Choi, M. Y.; Dong, F.; Han, S. W.; Miller, R. E. J. Phys. Chem. A 2008, 112, 7185. doi: 10.1021/jp8012688

    75. [75]

      (75) Wiorkiewicz-Kuczera, J.; Karplus, M. J. Am. Chem. Soc. 1990,112, 5324. doi: 10.1021/ja00169a045

    76. [76]

      (76) Kim, H. S.; Ahn, D. S.; Chung, S. Y.; Kim, S. K.; Lee, S.J. Phys. Chem. A 2007, 111, 8007. doi: 10.1021/jp074229d

    77. [77]

      (77) Aidas, K.; Mikkelsen, K. V.; Kongsted, J. Phys. Chem. Chem. Phys. 2010, 12, 761. doi: 10.1039/b915604f

    78. [78]

      (78) Lin, J.; Yu, C.; Peng, S.; Akiyama, I.; Li, K.; Lee, L. K.;LeBreton, P. R. J. Phys. Chem. 1980, 84, 1006. doi: 10.1021/j100446a015

    79. [79]

      (79) Nir, E.; Grace, L.; Brauer, B.; de Vries, M. S. J. Am. Chem. Soc.1999, 121, 4896. doi: 10.1021/ja984088g

    80. [80]

      (80) Nir, E.; Janzen, C.; Imhof, P.; Kleinermanns, K.; de Vries, M. S.J. Chem. Phys. 2001, 115, 4604. doi: 10.1063/1.1391443

    81. [81]

      (81) Piuzzi, F.; Mons, M.; Dimicoli, I.; Tardivel, B.; Zhao, Q. Chem. Phys. 2001, 270, 205. doi: 10.1016/S0301-0104(01)00393-7

    82. [82]

      (82) Mons, M.; Dimicoli, I.; Piuzzi, F.; Tardivel, B.; Elhanine, M.J. Phys. Chem. A 2002, 106, 5088. doi: 10.1021/jp0139742

    83. [83]

      (83) Choi, M. Y.; Miller, R. E. J. Am. Chem. Soc. 2006, 128,7320. doi: 10.1021/ja060741l

    84. [84]

      (84) Mons, M.; Piuzzi, F.; Dimicoli, I.; rb, L.; Leszczynski, J.J. Phys. Chem. A 2006, 110, 10921. doi: 10.1021/jp063738x

    85. [85]

      (85) Zhou, J.; Kostko, O.; Nicolas, C.; Tang, X.; Belau, L.; deVries, M. S.; Ahmed, M. J. Phys. Chem. A 2009, 113, 4829.doi: 10.1021/jp811107x

    86. [86]

      (86) Sabio, M.; Topiol, S.; Lumma, W. C. J. Phys. Chem. 1990, 94,1366. doi: 10.1021/j100367a032

    87. [87]

      (87) rb, L.; Kaczmarek, A.; rb, A.; Sadlej, A. J.; Leszczynski,J. J. Phys. Chem. B 2005, 109, 13770. doi: 10.1021/jp050394m

    88. [88]

      (88) Shukla, M. K.; Leszczynski, J. Chem. Phys. Lett. 2006, 429,261. doi: 10.1016/j.cplett.2006.08.037

    89. [89]

      (89) Liang, W.; Li, H. R.; Hu, X. B.; Han, S. J. Chem. Phys. 2006,328, 93. doi: 10.1016/j.chemphys.2006.06.025

    90. [90]

      (90) Schiedt, J.; Weinkauf, R.; Neumark, D. M.; Schlag, E. W.Chem. Phys. 1998, 239, 511. doi: 10.1016/S0301-0104(98)00361-9

    91. [91]

      (91) Desfrancois, C.; Abdoul Carime, H.; Schermann, J. J. Chem. Phys. 1996, 104, 7792. doi: 10.1063/1.471484

    92. [92]

      (92) Hendricks, J.; Lyapustina, S.; De Clercq, H.; Snodgrass, J.;Bowen, K. J. Chem. Phys. 1996, 104, 7788. doi: 10.1063/1.471482

    93. [93]

      (93) Dol unitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V. Chem. Phys. Lett. 1999, 307, 220. doi: 10.1016/S0009-2614(99)00492-3

    94. [94]

      (94) Wesolowski, S. S.; Leininger, M. L.; Pentchev, P. N.; Schaefer,H. F. J. Am. Chem. Soc. 2001, 123, 4023. doi: 10.1021/ja003814o

    95. [95]

      (95) Li, X.; Cai, Z.; Sevilla, M. D. J. Phys. Chem. A 2002, 106,1596. doi: 10.1021/jp013337b

    96. [96]

      (96) Desfrancois, C.; Periquet, V.; Bouteiller, Y.; Schermann, J. P.J. Phys. Chem. A 1998, 102, 1274. doi: 10.1021/jp9728417

    97. [97]

      (97) Dol unitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V. J. Phys. Chem. A 2002, 106, 8411. doi: 10.1021/jp020080o

    98. [98]

      (98) Hush, N. S.; Cheung, A. S. Chem. Phys. Lett. 1975, 34, 11. doi: 10.1016/0009-2614(75)80190-4

    99. [99]

      (99) Orlov, V.; Smirnov, A.; Varshavsky, Y. M. Tetrahedron Lett.1976, 17, 4377. doi: 10.1016/0040-4039(76)80120-7

    100. [100]

      (100) Sevilla, M. D.; Besler, B.; Colson, A. O. J. Phys. Chem. 1995,99, 1060. doi: 10.1021/j100003a032

    101. [101]

      (101) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574. doi: 10.1021/ja953370+

    102. [102]

      (102) Leão, M. B. C.; Lon , R. L.; Pavão, A. C. J. Mol. Struct. -Theochem 1999, 490, 145. doi: 10.1016/S0166-1280(99)00095-0

    103. [103]

      (103) Meot-Ner, M. J. Am. Chem. Soc. 1979, 101, 2396. doi: 10.1021/ja00503a027

    104. [104]

      (104) Lias, S. J. Phys. Chem. Ref. Data 1984, 13, 695. doi: 10.1063/1.555719

    105. [105]

      (105) Greco, F.; Liguori, A.; Sindona, G.; Uccella, N. J. Am. Chem. Soc. 1990, 112, 9092. doi: 10.1021/ja00181a009

    106. [106]

      (106) Podolyan, Y.; rb, L.; Leszczynski, J. J. Phys. Chem. A 2000,104, 7346. doi: 10.1021/jp000740u

    107. [107]

      (107) Russo, N.; Toscano, M.; Grand, A.; Jolibois, F. J. Comput. Chem. 1998, 19, 989.

    108. [108]

      (108) Chandra, A. K.; Nguyen, M. T.; Uchimaru, T.; Zeegers-Huyskens, T. J. Phys. Chem. A 1999, 103, 8853. doi: 10.1021/jp990647+

    109. [109]

      (109) Cao, G. J.; Xu, H. G.; Li, R. Z.; Zheng, W. J. Chem. Phys.2012, 136, 014305. doi: 10.1063/1.3671945

    110. [110]

      (110) Esteruelas, M. A.; Garcia-Raboso, J.; Olivan, M. Inorg. Chem.2012, 51, 9522. doi: 10.1021/ic3013238

    111. [111]

      (111) Javan, M. J.; Tehrani, Z. A.; Fattahi, A.; Jamshidi, Z. Struct. Chem. 2012, 23, 1843. doi: 10.1007/s11224-012-9993-2

    112. [112]

      (112) Lin, Y. X.; Wang, H. Y.; Gao, S. M.; Wu, Y. X.; Li, R. H. Acta Phys. -Chim. Sin. 2013, 29, 1233. [林月霞, 王红艳, 高思敏,吴颖曦,李汝虎. 物理化学学报, 2013, 29, 1233.] doi: 10.3866/PKU.WHXB201304022

    113. [113]

      (113) Palamarchuk, G. V.; Shishkin, O. V.; rb, L.; Leszczynski, J.J. Phys. Chem. B 2013, 117, 2841. doi: 10.1021/jp311363c

    114. [114]

      (114) Villabona-Monsalve, J. P.; Noria, R.; Matsika, S.; Peon, J.J. Am. Chem. Soc. 2012, 134, 7820. doi: 10.1021/ja300546x


  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    3. [3]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    4. [4]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    8. [8]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    13. [13]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    14. [14]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

Metrics
  • PDF Downloads(718)
  • Abstract views(1283)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return