Citation: LIU Ying, MENG Xiang-Guang, YU Wei-Feng, LI Xiao-Hong, PENG Xiao. Hydrolysis of Methyl-β-D-cellobioside Catalyzed by Functional Micelles with Glutamic Acid under Mild Conditions[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2263-2270. doi: 10.3866/PKU.WHXB201307292 shu

Hydrolysis of Methyl-β-D-cellobioside Catalyzed by Functional Micelles with Glutamic Acid under Mild Conditions

  • Received Date: 13 May 2013
    Available Online: 29 July 2013

    Fund Project: 国家自然科学基金(21073126, 21273156)资助项目 (21073126, 21273156)

  • Asurfactant with long alkyl chains and glutamic acid, Nα-dodecyl-L-glutamic acid, was synthesized. Micelles of this surfactant were used to catalyze the hydrolysis of methyl-β-D-cellobioside (MCB), a model substrate of cellulose, under mild conditions. The results indicate that the functional micelle displayed effective catalytic activity for the hydrolysis of MCB to glucose at low temperature (90℃) and an optimal pH of 5.0. The first-order reaction rate constant (km) of MCB hydrolysis catalyzed by the synthesized micelles was calculated based on the phase separation model of micellar catalysis. The hydrolysis of MCB catalyzed by the cooperative systems of micelles with glutamic acid (Glu) or histidine (His) was also investigated. The addition of amino acids promoted the hydrolysis of MCB, and the maximumcatalytic efficiency was reached at a molar concentration ratio of micelles to amino acids of 1:1. Temperature considerably influenced the reaction rate and product of MCB hydrolysis. The yield of glucose from MCB hydrolysis catalyzed by the cooperative system of micelles with Glu reached more than 36.6%after 1.5 h at 130℃. The kinetics of this reaction was studied; the apparent first-order rate constants (kobsd) were obtained and the activation energy (Ea) calculated for the formation of glucose was 97.18 kJ·mol-1.

  • 加载中
    1. [1]

      (1) Dhepe, P. L.; Fukuoka, A. ChemSusChem 2008, 1 (12), 969.doi: 10.1002/cssc.v1:12

    2. [2]

      (2) Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12 (4), 539.doi: 10.1039/b922014c

    3. [3]

      (3) Igarashi, K.; Uchihashi, T.; Koivula, A.; Wada, M.; Kimura, S.;Okamoto, T.; Penttilä, M.; Ando, T.; Samejima, M. Science2011, 333 (6047), 1279. doi: 10.1126/science.1208386

    4. [4]

      (4) Lynd, L. R.; Laser, M. S.; Bransby, D.; Dale, B. E.; Davison, B.;Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J. D.;Sheehan, J.;Wyman, C. E. Nat. Biotechnol. 2008, 26 (2), 169.doi: 10.1038/nbt0208-169

    5. [5]

      (5) Wolfenden, R.; Yuan, Y. J. Am. Chem. Soc. 2008, 130 (24),7548. doi: 10.1021/ja802206s

    6. [6]

      (6) Komanoya, T.; Kobayashi, H.; Hara, K.; Chun, W. J.; Fukuoka,A. Appl. Catal. A-Gen. 2011, 407 (1-2), 188.

    7. [7]

      (7) Harmer, M. A.; Fan, A.; Liauw, A.; Kumar, R. K. Chem. Commun. 2009, No. 43, 6610.

    8. [8]

      (8) Nie, H. R.; Liu, M. Z.; Chen, Z. B. Acta Phys. -Chim. Sin. 2004,20 (4), 386. [聂华荣,柳明珠,陈振斌.物理化学学报, 2004,20 (4), 386.] doi: 10.3866/PKU.WHXB20040411

    9. [9]

      (9) Wilson, D. B. Curr. Opin. Biotech. 2009, 20 (3), 295. doi: 10.1016/j.copbio.2009.05.007

    10. [10]

      (10) Rinaldi, R.; Palkovits, R.; Schuth, F. Angew. Chem. Int. Edit.2008, 47 (42), 8047. doi: 10.1002/anie.v47:42

    11. [11]

      (11) Kitano, M.; Yamaguchi, D.; Suganuma, S.; Nakajima, K.; Kato,H.; Hayashi, S.; Hara, M. Langmuir 2009, 25 (9), 5068. doi: 10.1021/la8040506

    12. [12]

      (12) Wang, H. Y.; Zhang, C. B.; He, H.; Wang, L. Acta Phys. -Chim. Sin. 2010, 26 (7), 1873. [王华瑜, 张长斌,贺泓,王莲.物理化学学报, 2010, 26 (7), 1873.] doi: 10.3866/PKU.WHXB20100721

    13. [13]

      (13) Long, J. X.; Guo, B.; Li, X. H.; Wang, F. R.; Wang, L. F. Acta Phys. -Chim. Sin. 2011, 27 (5), 995. [龙金星,郭斌,李雪辉,王芙蓉, 王乐夫.物理化学学报, 2011, 27 (5), 995.] doi: 10.3866/PKU.WHXB20110506

    14. [14]

      (14) Singhania, R. R.; Patel, A. K.; Sukumaran, R. K.; Larroche, C.;Pandey, A. Bioresource Technol. 2013, 127, 500. doi: 10.1016/j.biortech.2012.09.012

    15. [15]

      (15) Koshland, D. E. J.; Stein, S. S. J. Biol. Chem. 1954, 208 (1), 139.

    16. [16]

      (16) Wang, J. H.; Hou, Q. Q.; Dong, L. H.; Liu, Y. J.; Liu, C. B.J. Mol. Graph. Model. 2011, 30, 148. doi: 10.1016/j.jmgm.2011.06.012

    17. [17]

      (17) Verma, M. L.; Chaudhary, R.; Tsuzuki, T.; Barrow, C. J.; Puri,M. Bioresource Technol. 2013, 135, 2. doi: 10.1016/j.biortech.2013.01.047

    18. [18]

      (18) Figueira, J. A.; Sato, H. H.; Fernandes, P. J. Agric. Food Chem.2013, 61 (3), 626. doi: 10.1021/jf304594s

    19. [19]

      (19) Muñoz-Gutiérrez, I.; Oropeza, R.; sset, G.; Martinez, A.J. Ind. Microbiol. Biot. 2012, 39 (8), 1141.

    20. [20]

      (20) Liu, L. F.; Zeng, Z. T.; Zeng, G. M.; Chen, M.; Zhang, Y.;Zhang, J. C.; Fang, X.; Jiang, M.; Lu, L. H. Bioorg. Med. Chem. Lett. 2012, 22 (2), 837. doi: 10.1016/j.bmcl.2011.12.053

    21. [21]

      (21) Jiang, F. B.; Jiang, B. Y.; Cao, Y. S.; Meng, X. G.; Yu, X. Q.;Zeng, X. C. Colloids Surf. A 2005, 254 (1-3), 91.

    22. [22]

      (22) Bhattacharya, S.; Kumari, N. Coord. Chem. Rev. 2009, 253 (17-18), 2133. doi: 10.1016/j.ccr.2009.01.016

    23. [23]

      (23) Desbouis, D.; Troitsky, I. P.; Belousoff, M. J.; Spiccia, L.;Graham, B. Coord. Chem. Rev. 2012, 256 (11-12), 897.

    24. [24]

      (24) Boudou, M.; Ogawa, C.; Kobayashi, S. Adv. Synth. Catal. 2006,348 (18), 2585.

    25. [25]

      (25) Ye, Y.; Ding, Q. P.;Wu, J. Tetrahedron 2008, 64 (7), 1378. doi: 10.1016/j.tet.2007.11.055

    26. [26]

      (26) Mo, Z. L.; Sun, Y. X.; Chen, H.; Wang, K. J.; Liu, Y. Z.; Li, H. J.Acta Chim. Sin. 2005, 63 (14), 1365. [莫尊理, 孙银霞,陈红, 王坤杰, 刘艳芝, 李贺军. 化学学报, 2005, 63 (14),1365.]

    27. [27]

      (27) Sasidharan, M.; Gunawardhana, N.; Luitel, H. N.; Yokoi, T.;Inoue, M.; Yusa, S.; Watari, T.; Yoshio, M.; Tatsumi, T.;Nakashima, K. J. Colloid Interface Sci. 2012, 370 (1), 51. doi: 10.1016/j.jcis.2011.12.050

    28. [28]

      (28) Jiang, F. B.; Huang, L. Y.; Meng, X. G.; Du, J.; Yu, X. Q.; Zhao,Y. F.; Zeng, X. C. J. Colloid Interface Sci. 2006, 303 (1),236. doi: 10.1016/j.jcis.2006.07.050

    29. [29]

      (29) Kou, D.; Meng, X. G.; Liu, Y.; Du, J.; Kou, X. M.; Zeng, X. C.Colloids Surf. A 2008, 324 (1-3), 189.

    30. [30]

      (30) Li, J. H.; Du, L. K.; Wang, L. S. J. Phys. Chem. B 2010, 114 (46), 15261. doi: 10.1021/jp1064177

    31. [31]

      (31) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson,D. B. Biochemistry 1998, 37 (26), 9220. doi: 10.1021/bi980063i

    32. [32]

      (32) Zechel, D. L.; Withers, S. G. Accounts Chem. Res. 2000, 33 (1),11. doi: 10.1021/ar970172

    33. [33]

      (33) Meiland, M.; Heinze, T.; Guenther, W.; Liebert, T. Carbohyd. Res. 2010, 345 (2), 257. doi: 10.1016/j.carres.2009.11.007

    34. [34]

      (34) Cheng, M. X.; Shi, T.; Guan, H. Y.; Wang, S. T.; Wang, X. H.;Jiang, Z. J. Appl. Catal. B: Environ. 2011, 107 (1-2), 104.

    35. [35]

      (35) Zhang, Y.; Xu, J. L.; Qi, W.; Yuan, Z. H.; Zhuang, X. S.; Liu, Y.;He, M. C. Appl. Biochem. Biotechnol. 2012, 168 (1), 144. doi: 10.1007/s12010-011-9362-4

    36. [36]

      (36) Saqib, A. A. N.; Whitney, P. J. Biomass Bioenerg. 2011, 35 (11),4748. doi: 10.1016/j.biombioe.2011.09.013

    37. [37]

      (37) Ruiz, M. D. C. R.; Querner, J.; Adorjan, I.; Kosma, P.; Rosenau,T. Macromol. Symp. 2005, 232 (1), 68.

    38. [38]

      (38) Petersen, S. H.; Vanzyl, W. H.; Pretorius, I. S. Biotechnol. Tech.1998, 12 (8), 615. doi: 10.1023/A:1008829129516

    39. [39]

      (39) Violot, S.; Aghajari, N.; Czjzek, M.; Feller, G.; Sonan, G. K.; uet, P.; Gerday, C.; Haser, R.; Receveur-Bréchot, V. J. Mol. Biol. 2005, 348 (5), 1211. doi: 10.1016/j.jmb.2005.03.026

    40. [40]

      (40) Liu, J. L.; Wang, X. M.; Xu. D. G. J. Phys. Chem. B 2010, 114 (3), 1462. doi: 10.1021/jp909177e

    41. [41]

      (41) Meng, X. G.; Guo, Y.; Hu, C. W.; Zeng, X. C. J. Inorg. Biochem. 2004, 98 (12), 2107. doi: 10.1016/j.jinorgbio.2004.09.019

    42. [42]

      (42) Dwars, T.; Paetzold, E.; Oehme, G. Angew. Chem. Int. Edit.2005, 44 (44), 7174.

    43. [43]

      (43) Menger, F. M.; Portnoy, C. E. J. Am. Chem. Soc. 1967, 89 (18),4698. doi: 10.1021/ja00994a023

    44. [44]

      (44) Zeng, X. C.; Meng, X. G.; Wang, Q.; Zhang, Y. Q.; Qin, Z. M.J. Disper. Sci. Technol. 1997, 18 (4), 369. doi: 10.1080/01932699708943741

    45. [45]

      (45) Zeng, X. C.; Wang, Q.; Meng, X. G.; Zhang, Y. Q.; Qin, Z. M.J. Disper. Sci. Technol. 1998, 19 (5), 591. doi: 10.1080/01932699808913201

    46. [46]

      (46) Knowles, J. K. C.; Lentovaara, P.; Murray, M.; Sinnott, M. L.J. Chem. Soc., Chem. Commun. 1988, No. 21, 1401. doi: 10.1039/C39880001401

    47. [47]

      (47) Claeyssens, M.; Tomme, P.; Brewer, C. F.; Hehre, E. J. FEBS Lett. 1990, 263 (1), 89.

    48. [48]

      (48) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson,D. B. Biochemistry 1998, 37 (26), 9220. doi: 10.1021/bi980063i

    49. [49]

      (49) Zechel, D. L.; Withers, S. G. Accounts Chem. Res. 2000, 33 (1),11. doi: 10.1021/ar970172+

    50. [50]

      (50) Matson, T. D.; Barta, K.; Iretskii, A. V.; Ford, P. C. J. Am. Chem. Soc. 2011, 133 (35), 14090. doi: 10.1021/ja205436c

    51. [51]

      (51) Potvin, J.; Sorlien, E.; Hegner, J.; DeBoef, B.; Lucht, B. L.Tetrahedron Lett. 2011, 52 (44), 5891.

    52. [52]

      (52) Liang, X.; Montoya, A.; Haynes, B. S. J. Phys. Chem. B 2011,115 (36), 10682. doi: 10.1021/jp204199h

    53. [53]

      (53) Sasaki, M.; Adschiri, T.; Arai, K. AIChE J. 2004, 50 (1), 192.


  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    7. [7]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    14. [14]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(623)
  • Abstract views(724)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return