Citation: LIU Ying, MENG Xiang-Guang, YU Wei-Feng, LI Xiao-Hong, PENG Xiao. Hydrolysis of Methyl-β-D-cellobioside Catalyzed by Functional Micelles with Glutamic Acid under Mild Conditions[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2263-2270. doi: 10.3866/PKU.WHXB201307292
-
Asurfactant with long alkyl chains and glutamic acid, Nα-dodecyl-L-glutamic acid, was synthesized. Micelles of this surfactant were used to catalyze the hydrolysis of methyl-β-D-cellobioside (MCB), a model substrate of cellulose, under mild conditions. The results indicate that the functional micelle displayed effective catalytic activity for the hydrolysis of MCB to glucose at low temperature (90℃) and an optimal pH of 5.0. The first-order reaction rate constant (km) of MCB hydrolysis catalyzed by the synthesized micelles was calculated based on the phase separation model of micellar catalysis. The hydrolysis of MCB catalyzed by the cooperative systems of micelles with glutamic acid (Glu) or histidine (His) was also investigated. The addition of amino acids promoted the hydrolysis of MCB, and the maximumcatalytic efficiency was reached at a molar concentration ratio of micelles to amino acids of 1:1. Temperature considerably influenced the reaction rate and product of MCB hydrolysis. The yield of glucose from MCB hydrolysis catalyzed by the cooperative system of micelles with Glu reached more than 36.6%after 1.5 h at 130℃. The kinetics of this reaction was studied; the apparent first-order rate constants (kobsd) were obtained and the activation energy (Ea) calculated for the formation of glucose was 97.18 kJ·mol-1.
-
-
[1]
(1) Dhepe, P. L.; Fukuoka, A. ChemSusChem 2008, 1 (12), 969.doi: 10.1002/cssc.v1:12
-
[2]
(2) Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12 (4), 539.doi: 10.1039/b922014c
-
[3]
(3) Igarashi, K.; Uchihashi, T.; Koivula, A.; Wada, M.; Kimura, S.;Okamoto, T.; Penttilä, M.; Ando, T.; Samejima, M. Science2011, 333 (6047), 1279. doi: 10.1126/science.1208386
-
[4]
(4) Lynd, L. R.; Laser, M. S.; Bransby, D.; Dale, B. E.; Davison, B.;Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J. D.;Sheehan, J.;Wyman, C. E. Nat. Biotechnol. 2008, 26 (2), 169.doi: 10.1038/nbt0208-169
-
[5]
(5) Wolfenden, R.; Yuan, Y. J. Am. Chem. Soc. 2008, 130 (24),7548. doi: 10.1021/ja802206s
-
[6]
(6) Komanoya, T.; Kobayashi, H.; Hara, K.; Chun, W. J.; Fukuoka,A. Appl. Catal. A-Gen. 2011, 407 (1-2), 188.
-
[7]
(7) Harmer, M. A.; Fan, A.; Liauw, A.; Kumar, R. K. Chem. Commun. 2009, No. 43, 6610.
-
[8]
(8) Nie, H. R.; Liu, M. Z.; Chen, Z. B. Acta Phys. -Chim. Sin. 2004,20 (4), 386. [聂华荣,柳明珠,陈振斌.物理化学学报, 2004,20 (4), 386.] doi: 10.3866/PKU.WHXB20040411
-
[9]
(9) Wilson, D. B. Curr. Opin. Biotech. 2009, 20 (3), 295. doi: 10.1016/j.copbio.2009.05.007
-
[10]
(10) Rinaldi, R.; Palkovits, R.; Schuth, F. Angew. Chem. Int. Edit.2008, 47 (42), 8047. doi: 10.1002/anie.v47:42
-
[11]
(11) Kitano, M.; Yamaguchi, D.; Suganuma, S.; Nakajima, K.; Kato,H.; Hayashi, S.; Hara, M. Langmuir 2009, 25 (9), 5068. doi: 10.1021/la8040506
-
[12]
(12) Wang, H. Y.; Zhang, C. B.; He, H.; Wang, L. Acta Phys. -Chim. Sin. 2010, 26 (7), 1873. [王华瑜, 张长斌,贺泓,王莲.物理化学学报, 2010, 26 (7), 1873.] doi: 10.3866/PKU.WHXB20100721
-
[13]
(13) Long, J. X.; Guo, B.; Li, X. H.; Wang, F. R.; Wang, L. F. Acta Phys. -Chim. Sin. 2011, 27 (5), 995. [龙金星,郭斌,李雪辉,王芙蓉, 王乐夫.物理化学学报, 2011, 27 (5), 995.] doi: 10.3866/PKU.WHXB20110506
-
[14]
(14) Singhania, R. R.; Patel, A. K.; Sukumaran, R. K.; Larroche, C.;Pandey, A. Bioresource Technol. 2013, 127, 500. doi: 10.1016/j.biortech.2012.09.012
-
[15]
(15) Koshland, D. E. J.; Stein, S. S. J. Biol. Chem. 1954, 208 (1), 139.
-
[16]
(16) Wang, J. H.; Hou, Q. Q.; Dong, L. H.; Liu, Y. J.; Liu, C. B.J. Mol. Graph. Model. 2011, 30, 148. doi: 10.1016/j.jmgm.2011.06.012
-
[17]
(17) Verma, M. L.; Chaudhary, R.; Tsuzuki, T.; Barrow, C. J.; Puri,M. Bioresource Technol. 2013, 135, 2. doi: 10.1016/j.biortech.2013.01.047
-
[18]
(18) Figueira, J. A.; Sato, H. H.; Fernandes, P. J. Agric. Food Chem.2013, 61 (3), 626. doi: 10.1021/jf304594s
-
[19]
(19) Muñoz-Gutiérrez, I.; Oropeza, R.; sset, G.; Martinez, A.J. Ind. Microbiol. Biot. 2012, 39 (8), 1141.
-
[20]
(20) Liu, L. F.; Zeng, Z. T.; Zeng, G. M.; Chen, M.; Zhang, Y.;Zhang, J. C.; Fang, X.; Jiang, M.; Lu, L. H. Bioorg. Med. Chem. Lett. 2012, 22 (2), 837. doi: 10.1016/j.bmcl.2011.12.053
-
[21]
(21) Jiang, F. B.; Jiang, B. Y.; Cao, Y. S.; Meng, X. G.; Yu, X. Q.;Zeng, X. C. Colloids Surf. A 2005, 254 (1-3), 91.
-
[22]
(22) Bhattacharya, S.; Kumari, N. Coord. Chem. Rev. 2009, 253 (17-18), 2133. doi: 10.1016/j.ccr.2009.01.016
-
[23]
(23) Desbouis, D.; Troitsky, I. P.; Belousoff, M. J.; Spiccia, L.;Graham, B. Coord. Chem. Rev. 2012, 256 (11-12), 897.
-
[24]
(24) Boudou, M.; Ogawa, C.; Kobayashi, S. Adv. Synth. Catal. 2006,348 (18), 2585.
-
[25]
(25) Ye, Y.; Ding, Q. P.;Wu, J. Tetrahedron 2008, 64 (7), 1378. doi: 10.1016/j.tet.2007.11.055
-
[26]
(26) Mo, Z. L.; Sun, Y. X.; Chen, H.; Wang, K. J.; Liu, Y. Z.; Li, H. J.Acta Chim. Sin. 2005, 63 (14), 1365. [莫尊理, 孙银霞,陈红, 王坤杰, 刘艳芝, 李贺军. 化学学报, 2005, 63 (14),1365.]
-
[27]
(27) Sasidharan, M.; Gunawardhana, N.; Luitel, H. N.; Yokoi, T.;Inoue, M.; Yusa, S.; Watari, T.; Yoshio, M.; Tatsumi, T.;Nakashima, K. J. Colloid Interface Sci. 2012, 370 (1), 51. doi: 10.1016/j.jcis.2011.12.050
-
[28]
(28) Jiang, F. B.; Huang, L. Y.; Meng, X. G.; Du, J.; Yu, X. Q.; Zhao,Y. F.; Zeng, X. C. J. Colloid Interface Sci. 2006, 303 (1),236. doi: 10.1016/j.jcis.2006.07.050
-
[29]
(29) Kou, D.; Meng, X. G.; Liu, Y.; Du, J.; Kou, X. M.; Zeng, X. C.Colloids Surf. A 2008, 324 (1-3), 189.
-
[30]
(30) Li, J. H.; Du, L. K.; Wang, L. S. J. Phys. Chem. B 2010, 114 (46), 15261. doi: 10.1021/jp1064177
-
[31]
(31) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson,D. B. Biochemistry 1998, 37 (26), 9220. doi: 10.1021/bi980063i
-
[32]
(32) Zechel, D. L.; Withers, S. G. Accounts Chem. Res. 2000, 33 (1),11. doi: 10.1021/ar970172
-
[33]
(33) Meiland, M.; Heinze, T.; Guenther, W.; Liebert, T. Carbohyd. Res. 2010, 345 (2), 257. doi: 10.1016/j.carres.2009.11.007
-
[34]
(34) Cheng, M. X.; Shi, T.; Guan, H. Y.; Wang, S. T.; Wang, X. H.;Jiang, Z. J. Appl. Catal. B: Environ. 2011, 107 (1-2), 104.
-
[35]
(35) Zhang, Y.; Xu, J. L.; Qi, W.; Yuan, Z. H.; Zhuang, X. S.; Liu, Y.;He, M. C. Appl. Biochem. Biotechnol. 2012, 168 (1), 144. doi: 10.1007/s12010-011-9362-4
-
[36]
(36) Saqib, A. A. N.; Whitney, P. J. Biomass Bioenerg. 2011, 35 (11),4748. doi: 10.1016/j.biombioe.2011.09.013
-
[37]
(37) Ruiz, M. D. C. R.; Querner, J.; Adorjan, I.; Kosma, P.; Rosenau,T. Macromol. Symp. 2005, 232 (1), 68.
-
[38]
(38) Petersen, S. H.; Vanzyl, W. H.; Pretorius, I. S. Biotechnol. Tech.1998, 12 (8), 615. doi: 10.1023/A:1008829129516
-
[39]
(39) Violot, S.; Aghajari, N.; Czjzek, M.; Feller, G.; Sonan, G. K.; uet, P.; Gerday, C.; Haser, R.; Receveur-Bréchot, V. J. Mol. Biol. 2005, 348 (5), 1211. doi: 10.1016/j.jmb.2005.03.026
-
[40]
(40) Liu, J. L.; Wang, X. M.; Xu. D. G. J. Phys. Chem. B 2010, 114 (3), 1462. doi: 10.1021/jp909177e
-
[41]
(41) Meng, X. G.; Guo, Y.; Hu, C. W.; Zeng, X. C. J. Inorg. Biochem. 2004, 98 (12), 2107. doi: 10.1016/j.jinorgbio.2004.09.019
-
[42]
(42) Dwars, T.; Paetzold, E.; Oehme, G. Angew. Chem. Int. Edit.2005, 44 (44), 7174.
-
[43]
(43) Menger, F. M.; Portnoy, C. E. J. Am. Chem. Soc. 1967, 89 (18),4698. doi: 10.1021/ja00994a023
-
[44]
(44) Zeng, X. C.; Meng, X. G.; Wang, Q.; Zhang, Y. Q.; Qin, Z. M.J. Disper. Sci. Technol. 1997, 18 (4), 369. doi: 10.1080/01932699708943741
-
[45]
(45) Zeng, X. C.; Wang, Q.; Meng, X. G.; Zhang, Y. Q.; Qin, Z. M.J. Disper. Sci. Technol. 1998, 19 (5), 591. doi: 10.1080/01932699808913201
-
[46]
(46) Knowles, J. K. C.; Lentovaara, P.; Murray, M.; Sinnott, M. L.J. Chem. Soc., Chem. Commun. 1988, No. 21, 1401. doi: 10.1039/C39880001401
-
[47]
(47) Claeyssens, M.; Tomme, P.; Brewer, C. F.; Hehre, E. J. FEBS Lett. 1990, 263 (1), 89.
-
[48]
(48) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson,D. B. Biochemistry 1998, 37 (26), 9220. doi: 10.1021/bi980063i
-
[49]
(49) Zechel, D. L.; Withers, S. G. Accounts Chem. Res. 2000, 33 (1),11. doi: 10.1021/ar970172+
-
[50]
(50) Matson, T. D.; Barta, K.; Iretskii, A. V.; Ford, P. C. J. Am. Chem. Soc. 2011, 133 (35), 14090. doi: 10.1021/ja205436c
-
[51]
(51) Potvin, J.; Sorlien, E.; Hegner, J.; DeBoef, B.; Lucht, B. L.Tetrahedron Lett. 2011, 52 (44), 5891.
-
[52]
(52) Liang, X.; Montoya, A.; Haynes, B. S. J. Phys. Chem. B 2011,115 (36), 10682. doi: 10.1021/jp204199h
-
[53]
(53) Sasaki, M.; Adschiri, T.; Arai, K. AIChE J. 2004, 50 (1), 192.
-
[1]
-
-
[1]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[2]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[3]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[4]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[5]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[6]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[7]
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
-
[8]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[9]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[10]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[11]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[12]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[13]
Yixuan Zhu , Qingtong Wang , Jin Li , Lin Chen , Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090
-
[14]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[15]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[16]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[19]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[20]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[1]
Metrics
- PDF Downloads(623)
- Abstract views(724)
- HTML views(6)