Citation:
WU Xuan-Jun, ZHENG Ji, LI Jiang, CAI Wei-Quan. Molecular Simulation on Hydrogen Storage Capacities of Porous Metal Organic Frameworks[J]. Acta Physico-Chimica Sinica,
;2013, 29(10): 2207-2214.
doi:
10.3866/PKU.WHXB201307191
-
The adsorption equilibriumproperties of H2 molecules in various metal-organic frameworks (MOFs) including IRMOF-61, IRMOF-62, and IRMOF-1 were studied using the grand canonical Monte Carlo (GCMC) simulation method with the optimized parameters obtained using the DREIDING force field. The calculated parameters could exactly reproduce the adsorption isotherms of H2 molecules in IRMOF-62. However, they may underestimate the adsorption isothermof H2 molecules in IRMOF-61 at lowpressure. The H2 storage capacities of IRMOF-61 and IRMOF-62 with interpenetrating frameworks were not significantly higher than that of IRMOF-1 at roomtemperature. H2 molecules were preferentially adsorbed near Zn4O units, which were located close to the benzene rings, according to the probability density distribution of H2 molecules in the above MOFs under adsorption equilibriumconditions at 77 K, 100 kPa, and 3.0 MPa. For the MOFs with interpenetrating frameworks, the area with preferential adsorption sites for H2 molecules is smaller and more scattered than the MOF without because of their smaller cavity sizes. The organic linker should be of appropriate length to promote the formation of an interpenetrating framework, which can enhance the interaction between the framework and H2 molecules, and thus improve H2 storage capacity. If the organic linker is too long, it will decrease the adsorption capacity of the MOF for H2 because more corners unable to adsorb H2 are formed.
-
Keywords:
-
MOFs
, - Porous material,
- GCMC simulation,
- Hydrogen storage,
- Isothermal adsorption
-
-
-
-
[1]
(1) Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128,1304. doi: 10.1021/ja056639q
-
[2]
(2) Wong-Foy, A. G.; Matzger, A. J.; Yagh, O. M. J. Am. Chem. Soc. 2006, 128, 3494. doi: 10.1021/ja058213h
-
[3]
(3) Nijem, N.; Veyan, J. F.; Kong, L. Z.; Li, K. H.; Pramanik, S.;Zhao, Y. G.; Li, J.; Langreth, D.; Chabal, Y. J. J. Am. Chem. Soc.2010, 132, 1654. doi: 10.1021/ja908817n
-
[4]
(4) Yang, J.; Sudik, A.; Wolverton, C. J. Phys. Chem.C 2007, 111,19134. doi: 10.1021/jp076434z
-
[5]
(5) Skipper, C. V. J.; Hoang, T. K. A.; Antonelli, D. M.;Kaltsoyannis, N. Chem. -Eur. J. 2012, 18, 1750. doi: 10.1002/chem.v18.6
-
[6]
(6) Lu, H. L.; Wang, J. W.; Liu, C. L.; Ratcliffe, C. I.; Becker, U.;Kumar, R.; Ripmeester, J. J. Am. Chem. Soc. 2012, 134, 9160.doi: 10.1021/ja303222u
-
[7]
(7) Senadheera, L.; Conradi, M. S. J. Phys. Chem. B 2007, 111,12097. doi: 10.1021/jp074517+
-
[8]
(8) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.;O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. doi: 10.1126/science.1067208
-
[9]
(9) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.;Yaghi, O. M. Science 2005, 309, 1350. doi: 10.1126/science.1113247
-
[10]
(10) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999,402, 276. doi: 10.1038/46248
-
[11]
(11) Han, S. S.; Furukawa, H.; Yaghi, O. M.; ddard, W. A. J. Am. Chem. Soc. 2008, 130, 11580. doi: 10.1021/ja803247y
-
[12]
(12) Lan, J. H.; Cao, D. P.; Wang, W. C. J. Phys. Chem. C 2010, 114,3108. doi: 10.1021/jp9106525
-
[13]
(13) Sun, Y. X.; Ben, T.; Wang, L.; Qiu, S. L.; Sun, H. J. Phys. Chem. Lett. 2010, 1, 2753. doi: 10.1021/jz100894u
-
[14]
(14) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.;Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. T. Angew. Chem. Int. Edit. 2009, 48, 9457. doi: 10.1002/anie.200904637
-
[15]
(15) Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; , Y.; Eddaoudi, M.;Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 427,523.
-
[16]
(16) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.;O'Keefee, M.; Yaghi, O. M. Science 2003, 300, 1127. doi: 10.1126/science.1083440
-
[17]
(17) Furukawa, H.; Ko, N.; , Y. B.; Aratani, N.; Choi, S. B.; Choi,E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi,O. M. Science 2010, 329, 424. doi: 10.1126/science.1192160
-
[18]
(18) Frost, H.; Düren, T.; Snurr, R. Q. J. Phys. Chem. B 2006, 110,9565. doi: 10.1021/jp060433+
-
[19]
(19) Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111, 18794. doi: 10.1021/jp076657p
-
[20]
(20) Dalach, P.; Frost, H.; Snurr, R. Q.; Ellis, D. E. J. Phys. Chem. C2008, 112, 9278. doi: 10.1021/j9801008d
-
[21]
(21) Düren, T.; Millange, F.; Ferey, G.;Walton, K. S.; Snurr, R. Q.J. Phys. Chem. C 2007, 111, 15350. doi: 10.1021/jp074723h
-
[22]
(22) Bae, Y. S.; Snurr, R. Q. Microporous Mesoporous Mat. 2010,132, 300. doi: 10.1016/j.micromeso.2010.02.023
-
[23]
(23) Bae, Y. S.; Snurr, R. Q. Microporous Mesoporous Mat. 2010,135, 178. doi: 10.1016/j.micromeso.2010.07.007
-
[24]
(24) Getman, R. B.; Miller, J. H.; Wang, K.; Snurr, R. Q. J. Phys. Chem. C 2011, 115, 2066. doi: 10.1021/jp1094068
-
[25]
(25) Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.;Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. C 2012, 116,13143. doi: 10.1021/jp302356q
-
[26]
(26) Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber,G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N. Chem. -Eur. J. 2010, 16, 1560.doi: 10.1002/chem.v16:5
-
[27]
(27) Pantatosaki, E.; Pazzona, F. G.; Megariotis, G.; Papadopoulos,G. K. J. Phys. Chem. B 2010, 114, 2493. doi: 10.1021/jp911477a
-
[28]
(28) Gupta, A.; Chempath, S.; Sanborn, M. J.; Clark, L. A.; Snurr, R.Q. Mol. Simul. 2003, 29, 29. doi: 10.1080/0892702031000065719
-
[29]
(29) The Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk (accessed March 2013).
-
[30]
(30) Buch, V. J. Chem. Phys. 1994, 100, 7610. doi: 10.1063/1.466854
-
[31]
(31) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15,59. doi: 10.1021/i160057a011
-
[32]
(32) Myers, A. L.; Monson, P. A. Langmuir 2002, 18, 10261. doi: 10.1021/la026399h
-
[33]
(33) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996,14,33. doi: 10.1016/0263-7855(96)00018-5
-
[34]
(34) Wu, X. J.; Yang, X.; Song, J.; Cai, W. Q. Acta Chim. Sin. 2012,70, 2518. [吴选军,杨旭,宋杰,蔡卫权. 化学学报, 2012,70, 2518.] doi: 10.6023/A12110858
-
[35]
(35) Han, S. S.; Choi, S. H.; ddard, W. A. J. Phys. Chem. C 2011,115, 3507. doi: 10.1021/jp200321y
-
[1]
-
-
-
[1]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[2]
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
-
[3]
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388
-
[4]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[5]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[6]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[7]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[8]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[9]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[10]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[11]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[12]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[13]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[14]
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
-
[15]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[16]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[17]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[18]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[19]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[20]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[1]
Metrics
- PDF Downloads(741)
- Abstract views(1459)
- HTML views(105)