Citation: LI Na, ZHAO Feng-Qi, GAO Hong-Xu, HU Rong-Zu, XIAO Li-Bai, YAO Er-Gang, HUANG Xin-Ping, CHANG Pei. Thermokinetics of the Formation Reactions of Metal (Li, Na, Pb, Cu) Salts of 3-Nitro-1,2,4-triazol-5-one[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2101-2106. doi: 10.3866/PKU.WHXB201307153 shu

Thermokinetics of the Formation Reactions of Metal (Li, Na, Pb, Cu) Salts of 3-Nitro-1,2,4-triazol-5-one

  • Received Date: 3 June 2013
    Available Online: 15 July 2013

    Fund Project: 国家自然科学基金(21173163) (21173163)燃烧与爆炸技术重点实验室基金(9140C350307110C3506)资助项目 (9140C350307110C3506)

  • The thermokinetics of the formation reactions of metal (Li, Na, Pb, Cu) salts of 3-nitro-1,2,4-triazol- 5-one (NTO) was studied using a microcalorimeter. On the basis of experimental and calculated results, three thermodynamic parameters (activation energy, pre-exponential constant, and reaction order), rate constant, three thermokinetic parameters (activation enthalpy, activation entropy, and activation free energy) and the enthalpies of the reactions to prepare the metal salts of NTO in the temperature range of 25-40℃ were obtained. The title reactions occur easily in the studied temperature range. Based on Hess' law, the values of ΔfHm0 (Li(NTO)·2H2O, aq, 298.15 K) and ΔfHm0 (Na(NTO)·2H2O, aq, 298.15 K) are obtained.

  • 加载中
    1. [1]

      (1) Zhao, F. Q.; Hu, R. Z.; Xu, S. Y. Chin. J. Explos. Propell. 2008,31, 18. [赵凤起, 胡荣祖,徐司雨. 火炸药学报, 2008, 31, 18.]

    2. [2]

      (2) Sinditskii, V. P.; Smirnov, S. P.; E rshev, V. Y. J. Propell. Explos. Pyrotech. 2007, 32, 277.

    3. [3]

      (3) Trzcinski, W. A.; Szymanczyk, L. J. Energ. Mater. 2006, 23,151.

    4. [4]

      (4) Lee, J. S.; Jaw, K. S. J. Therm. Anal. Calorim. 2006, 85, 463.doi: 10.1007/s10973-005-7325-0

    5. [5]

      (5) Fan, X. Z.; Li, J. Z.; Zhang, L. Y.; Wang, B. Z.; Liu, X. G. Chin. J. Energ. Mater. 2007, 15, 316. [樊学忠, 李吉祯, 张腊莹, 王伯周,刘小刚. 含能材料, 2007, 15, 316.]

    6. [6]

      (6) Hu, R. Z.; Meng, Z. H.; Kang, B. Thermochim. Acta 1996, 275,159. doi: 10.1016/0040-6031(95)02680-0

    7. [7]

      (7) Song, J. R.; Hu, R. Z.; Li, F. P. Chinese Science Bulletin 1996,41, 1806.

    8. [8]

      (8) Kulkarni, P. B.; Purandare, G. N.; Nair, J. K.; Talawar, M. B.;Mukundan, T.; Asthana, S. N. J. Hazard. Mater. 2005, 119, 53.doi: 10.1016/j.jhazmat.2004.12.014

    9. [9]

      (9) Ma, H. X.; Song, J. R.; Hu, R. Z. Thermochim. Acta 2002, 389,43. doi: 10.1016/S0040-6031(02)00015-1

    10. [10]

      (10) Xie, Y.; Hu, R. Z.; Zhang, T. L. J. Therm. Anal. 1993, 39, 41.doi: 10.1007/BF02235445

    11. [11]

      (11) Singh, G.; Felix, S. P. J. Mol. Struct. 2003, 649, 71. doi: 10.1016/S0022-2860(02)00717-2

    12. [12]

      (12) Zhang, T. L.; Hu, R. Z.; Li, F. P.; Chen, L.; Yu, K. B. Chinese Science Bulletin 1993, 38, 1350.

    13. [13]

      (13) Zhang, T. L.; Hu, R. Z.; Li, F. P. Chin. J. Energ. Mater. 1993, 1,1.

    14. [14]

      (14) Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Gao, H. X.; Hu, R. Z.; Hao, H.X.; Pei, Q.; Gao, Y. Acta Phys. -Chim. Sin. 2007, 23, 1316. [仪建华, 赵凤起,徐司雨, 高红旭,胡荣祖, 郝海霞,裴庆,高茵.物理化学学报, 2007, 23, 1316.] doi: 10.1016/S1872-1508(07)60065-5

    15. [15]

      (15) Zhao, F. Q.; Zhang, H.; An, T.; Zhang, X. H.; Yi, J. H.; Xu, S.Y.; Wang, Y. L. Acta Phys. -Chim. Sin. 2013, 29, 777. [赵凤起,张衡,安亭,张晓宏, 仪建华,徐司雨, 汪营磊.物理化学学报, 2013, 29, 777.] doi: 10.3866/PKU.WHXB20130111

    16. [16]

      (16) Zhao, F. Q.; Xue, L.; Xing, X. L.; Hu, R. Z.; Gao, H. X.; Yi, J.H.; Xu, S. Y.; Pei, Q. Sci. China Chem. 2011, 54, 463.

    17. [17]

      (17) Xue, L.; Zhao, F. Q.; Xing, X. L.; Gao, H. X.; Xu, S. Y.; Hu, R.Z. Acta Phys. -Chim. Sin. 2009, 25, 2414. [薛亮,赵凤起,邢晓玲, 高红旭,徐司雨, 胡荣祖.物理化学学报, 2009, 25,2414.] doi: 10.3866/PKU.WHXB20091129

    18. [18]

      (18) Xing, X. L.; Zhao, F. Q.; Yi, J. H.; Gao, H. X.; Xu, S. Y.; Pei,Q.; Hao, H. X.; Hu, R. Z. J. Therm. Anal. Calorim. 2010, 99,704.

    19. [19]

      (19) Xing, X. L.; Xue, L.; Zhao, F. Q.; Gao, H. X.; Pei, Q.; Hu, R. Z.Chin. J. Chem. 2010, 28, 1370.

    20. [20]

      (20) Zhao, F. Q.; Hu, R. Z.; Zhang, H.; Gao, H. X.; Zhao, H. A.; Ma,H. X. Chem. Res. Chin. Univ. 2010, 26, 829.

    21. [21]

      (21) Xue, L.; Zhao, F. Q.; Xing, X. L.; Gao, H. X.; Hu, R. Z.,Thermochim. Acta 2009, 32, 54.

    22. [22]

      (22) Xiao, L. B.; Xing, X. L.; Fan, X. Z.; Zhao, F. Q.; Zhou, Z. M.;Huang, H. F.; An, T.; Hao, H. X.; Pei, Q. J. Therm. Anal. Calorim. 2012, 110, 1431. doi: 10.1007/s10973-011-2036-1

    23. [23]

      (23) Xiao, L. B.; Zhao, F. Q.; Xing, X. L.; Huang, H. F.; Zhou, Z.M.; An, T.; Tan, Y. Thermochim. Acta 2012, 546, 138. doi: 10.1016/j.tca.2012.07.003

    24. [24]

      (24) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Zhang, T. L.; Zhang, J. J.Thermal Analysis Kinetics, 2nd ed.; Science Press: Beijing,2008.

    25. [25]

      (25) Meng, Z. H.; Hu, R. Z. J. Therm. Anal. 1995, 45, 79. doi: 10.1007/BF02548666

    26. [26]

      (26) Weast, R. C. CRC Handbook of Chemistry and Physics, 70thed.; CRC Press Inc.: Florida, USA, 1989-1990; pp 73-85.


  • 加载中
    1. [1]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    2. [2]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    3. [3]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    4. [4]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    5. [5]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    6. [6]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    19. [19]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    20. [20]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

Metrics
  • PDF Downloads(515)
  • Abstract views(958)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return