Citation: ZHANG Ning, LI Wei-Zhong, CHEN Cong, ZUO Jian-Guo. Evaluation of the Application of Hydrogen Bonding Criteria to DMSO Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1891-1899. doi: 10.3866/PKU.WHXB201307121 shu

Evaluation of the Application of Hydrogen Bonding Criteria to DMSO Aqueous Solution

  • Received Date: 26 June 2013
    Available Online: 12 July 2013

    Fund Project: 国家自然科学基金(51276030, 50976017)资助项目 (51276030, 50976017)

  • Geometric and energetic criteria have been used to analyze the hydrogen bonding statistics and dynamics of aqueous solutions of dimethylsulfoxide (DMSO) of different concentrations using molecular dynamics simulation. These two hydrogen bonding criteria both reproduced the changes of the hydrogen bonding properties of the solutions with increasing concentration. Comparison of the results obtained using the two criteria revealed that the geometric criterion cannot exclude pairs that have weak pair interaction energy. As a result, the number of hydrogen bonds determined by the geometric criterion is larger than that by the energetic criterion. The energetic criterion has less ability to distinguish pairs that have improper relative orientation compared with the geometric criterion. However, the number of deficient hydrogen bonds determined by the energetic criterion is smaller than that by the geometric one. This deficiency of the energetic criterion results in longer hydrogen bonding lifetime than that of the geometric criterion. Thus, an extended criterion involving both geometric and energetic conditions is recommended for hydrogen bonding analysis.

  • 加载中
    1. [1]

      (1) Lide, D. R. CRC Handbook of Chemistry and Physics, 85th ed.;CRC Press: Boca Raton, FL, 2005.

    2. [2]

      (2) Hu, T. J.; Zhou, G. Y.; Gao, C.; Hua, Z. Z. Chin. J. Chem. Phys.2005, 18 (5), 845. [胡桐记,周国燕,高才,华泽钊. 化学物理学报, 2005, 18 (5), 845.]

    3. [3]

      (3) Soper, A.; Luzar, A. J. Chem. Phys. 1992, 97 (2), 1320. doi: 10.1063/1.463259

    4. [4]

      (4) Vishnyakov, A.; Lyubartsev, A. P.; Laaksonen, A. J. Phys. Chem. A 2001, 105 (10), 1702. doi: 10.1021/jp0007336

    5. [5]

      (5) Kirchner, B.; Hutter, J. Chem. Phys. Lett. 2002, 364 (5-6),497. doi: 10.1016/S0009-2614(02)01377-5

    6. [6]

      (6) Lei, Y.; Li, H.; Han, S. Chem. Phys. Lett. 2003, 380 (5-6),542. doi: 10.1016/j.cplett.2003.09.064

    7. [7]

      (7) Geerke, D. P.; Oostenbrink, C.; van der Vegt, N. F. A.; vanGunsteren, W. F. J. Phys. Chem. B 2004, 108 (4), 1436. doi: 10.1021/jp035034i

    8. [8]

      (8) Mancera, R. L.; Chalaris, M.; Refson, K.; Samios, J. Phys. Chem. Chem. Phys. 2004, 6 (1), 94. doi: 10.1039/b308989d

    9. [9]

      (9) Mancera, R. L.; Chalaris, M.; Samios, J. J. Mol. Liq. 2004, 110 (1-3), 147. doi: 10.1016/j.molliq.2003.09.010

    10. [10]

      (10) Zhang, X.; Zhang, Q.; Zhao, D. X. Acta Phys. -Chim. Sin. 2011,27 (11), 2547. [张霞, 张强, 赵东霞.物理化学学报,2011, 27 (11), 2547.] doi: 10.3866/PKU.WHXB20111107

    11. [11]

      (11) Chowdhuri, S.; Pattanayak, S. K. Mol. Phys. 2012, 111 (1), 135.

    12. [12]

      (12) Wong, D. B.; Sokolowsky, K. P.; El-Barghouthi, M. I.; Fenn, E.E.; Giammanco, C. H.; Sturlaugson, A. L.; Fayer, M. D. J. Phys. Chem. B 2012, 116 (18), 5479. doi: 10.1021/jp301967e

    13. [13]

      (13) Chen, C.; Li, W. Z. Acta Phys. -Chim. Sin. 2009, 25 (3), 507.[陈聪,李维仲.物理化学学报, 2009, 25 (3), 507.] doi: 10.3866/PKU.WHXB20090318

    14. [14]

      (14) Chen, C.; Li, W. Z.; Song, Y. C.; Weng, L. D. Acta Phys. -Chim. Sin. 2011, 27 (6), 1372. [陈聪,李维仲, 宋永臣,翁林岽. 物理化学学报, 2011, 27 (6), 1372.] doi: 10.3866/PKU.WHXB20110626

    15. [15]

      (15) Zhang, N.; Li, W.; Chen, C.; Zuo, J.; Weng, L. Mol. Phys. 2013,111 (7), 939. doi: 10.1080/00268976.2012.760050

    16. [16]

      (16) Stillinger, F. H.; Rahman, A. J. Chem. Phys. 1972, 57 (3),1281. doi: 10.1063/1.1678388

    17. [17]

      (17) Bako, I.; Megyes, T.; Balint, S.; Chihaia, V.; Bellissent-Funel,M. C.; Krienke, H.; Kopf, A.; Suh, S. H. J. Chem. Phys. 2010,132 (1), 014506. doi: 10.1063/1.3268626

    18. [18]

      (18) Swiatla-Wojcik, D. Chem. Phys. 2007, 342 (1-3), 260. doi: 10.1016/j.chemphys.2007.10.009

    19. [19]

      (19) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K.J. Comput. Chem. 2005, 26 (16), 1781.

    20. [20]

      (20) Strader, M. L.; Feller, S. E. J. Phys. Chem . A 2002, 106 (6),1074. doi: 10.1021/jp013658n

    21. [21]

      (21) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91 (24), 6269. doi: 10.1021/j100308a038

    22. [22]

      (22) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869

    23. [23]

      (23) Jorgensen, W. L.; Madura, J. D. Mol. Phys. 1985, 56 (6),1381. doi: 10.1080/00268978500103111

    24. [24]

      (24) Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys. 1994,101 (5), 4177. doi: 10.1063/1.467468

    25. [25]

      (25) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12),10089. doi: 10.1063/1.464397

    26. [26]

      (26) Chowdhuri, S.; Chandra, A. Phys. Rev. E 2002, 66 (4),041203. doi: 10.1103/PhysRevE.66.041203

    27. [27]

      (27) Guardia, E.; Marti, J.; Padro, J. A.; Saiz, L.; Komolkin, A. V. J. Mol. Liq. 2002, 96 -97, 3.

    28. [28]

      (28) Chelli, R.; Procacci, P.; Cardini, G.; Califano, S. Phys. Chem. Chem. Phys. 1999, 1 (5), 879. doi: 10.1039/a808957d

    29. [29]

      (29) Luzar, A.; Chandler, D. J. Chem. Phys. 1993, 98 (10), 8160.doi: 10.1063/1.464521

    30. [30]

      (30) Kalinichev, A. G.; rbaty, Y. E.; Okhulkov, A. V. J. Mol. Liq.1999, 82 (1-2), 57. doi: 10.1016/S0167-7322(99)00042-2

    31. [31]

      (31) Meng, E. C.; Kollman, P. A. J. Phys. Chem. 1996, 100 (27),11460. doi: 10.1021/jp9536209

    32. [32]

      (32) Towey, J. J.; Soper, A. K.; Dougan, L. J. Phys. Chem. B 2012,116 (47), 13898. doi: 10.1021/jp3093034

    33. [33]

      (33) Borin, I. A.; Skaf, M. S. J. Chem. Phys. 1999, 110 (13),6412. doi: 10.1063/1.478544

    34. [34]

      (34) Vaisman, I. I.; Berkowitz, M. L. J. Am. Chem. Soc. 1992, 114 (20), 7889. doi: 10.1021/ja00046a038

    35. [35]

      (35) Rapaport, D. C. Mol. Phys. 1983, 50 (5), 1151. doi: 10.1080/00268978300102931

    36. [36]

      (36) Elola, M. D.; Ladanyi, B. M. J. Chem. Phys. 2006, 125 (18),184506. doi: 10.1063/1.2364896

    37. [37]

      (37) Skarmoutsos, I.; Guardia, E.; Samios, J. J. Chem. Phys. 2010,133 (1), 014504. doi: 10.1063/1.3449142

    38. [38]

      (38) Soper, A. K.; Luzar, A. J. Phys. Chem. 1996, 100 (4), 1357. doi: 10.1021/jp951783r


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

Metrics
  • PDF Downloads(646)
  • Abstract views(929)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return