Citation:
NI Zhe-Ming, XIA Ming-Yu, SHI Wei, QIAN Ping-Ping. Adsorption and Decarbonylation Reaction of Furfural on Pt(111) Surface[J]. Acta Physico-Chimica Sinica,
;2013, 29(09): 1916-1922.
doi:
10.3866/PKU.WHXB201307101
-
The reaction mechanismof furan formation during decarbonylation of furfural on the Pt(111) plane was investigated by density functional theory generalized gradient approximation calculations with the slab model. The adsorption energy of furfural was calculated to determine preferred adsorption sites on the Pt(111) plane. The revealed possible mechanisms for the decarbonylation of furfural on the Pt(111) plane were studied. The results showed that a furfural molecule loses 0.765 electrons after adsorption on the Pt(111) surface. The d orbitals of the metal surface interact strongly with the π bonds of the furfural ring. This reduced the aromaticity of the furfural ring and the Catoms showed characteristics consistent with sp3 hybridization. The molecular plane of the adsorbate was distorted, and corresponding changes of bond lengths were found. The C―H(O) bonds and―CHO of furfural tilted away from the Pt surface. The calculations showthat furan was a possible product of the decarbonylation reaction. We then searched the transition states (TSs) and reaction potential energy surfaces with the linear and quadratic synchronous transit (LST/QST) complete search. By comparing energy barriers, we obtained the optimal path, which involved furfural forming an acyl intermediate by loss of the Hatom from the branched chain rather than direct decarburization. Furan was then formed by decarburization and hydrogenation of the acyl intermediate. The calculated barrier for the rate-determining step(C4H3O)CO*+*→C4H3O*+ CO* (* is adsorption site) is 127.65 kJ·mol-1.
-
-
-
[1]
(1) Schroeder, W. D.; Fontenot, C. J.; Schrader, G. L. J. Catal.2001, 203, 382. doi: 10.1006/jcat.2001.3333
-
[2]
(2) Cicmanec, P.; Syslova, K.; Tichy, J. Top. Catal. 2007, 45, 1.doi: 10.1007/s11244-007-0230-y
-
[3]
(3) Wildberger, M. D.; Mallat, T.; bel, U.; Baiker, A. Appl. Catal.1998, 168, 69. doi: 10.1016/S0926-860X(97)00345-1
-
[4]
(4) Liu, J. Y.; Guo, X. L.; Wang, X. T. Catalyst for Producing FuranfromFurfural Decarbonylation. CN Patent 10 142 2738, 2009-05-06. [刘金廷, 郭新亮,王香婷.一种高效糠醛脱羰制呋喃催化剂的制备: 中国, 10 142 2738[P]. 2009-05-06]
-
[5]
(5) Zhang, L.; Yu, L. Y. Catalyst Useful for Producing Furan byFurfural Liquid Phase Ddecarbonylation. CN Patent 10 2000569.A, 2011-04-06. [张龙,于落瀛. 一种糠醛液相脱羰生产呋喃用催化剂及制备方法: 中国, 10 200 0569.A[P]. 2011-04-06]
-
[6]
(6) Grandmaison, J. L.; Chantal, P. D.; Kaliaguine, S. C. Fuel 1990,69, 1058. doi: 10.1016/0016-2361(90)90020-Q
-
[7]
(7) Sitthisa, S.; Resasco, D. Catal. Lett. 2011, 141, 784. doi: 10.1007/s10562-011-0581-7
-
[8]
(8) Yu, L. Y.; Ding, L. W.; Zhang, L. Precious Metals 2011, 32 (3),69. [于落瀛, 丁立微,张龙.贵金属, 2011, 32 (3), 69.
-
[9]
(9) Zhang, W.; Zhu, Y. L.; Niu, S. S.; Li, Y. W. J. Mol. Catal. AChem.2011, 335, 71. doi: 10.1016/j.molcata.2010.11.016
-
[10]
(10) Xue, L.; Liu, S. W.; Xu, X. L. Chin. J. Mol. Catal. 2002, 16 (2),116. [薛莉,刘淑文, 徐贤伦. 分子催化, 2002, 16 (2), 116.]
-
[11]
(11) Vladimir, V. P.; Nathan, M.; Kwangjin, A.; Selim, A.; Gabor, A.S. Nano Lett. 2012, 12, 5196. doi: 10.1021/nl3023127
-
[12]
(12) Kwangjin, A.; Nathan, M.; Griffin, K., Vladimir, V. P.; Robert,L. B.; Gabor, A. S. J. Colloid Interface Sci. 2013, 392, 122. doi: 10.1016/j.jcis.2012.10.029
-
[13]
(13) Zheng, H. Y.; Zhu, Y. L.; ng, L. Fine Specialty Chem. 2005,13 (12), 7. [郑洪岩, 朱玉雷,龚亮,精细与专用化学品,2005, 13 (12), 7.]
-
[14]
(14) Sitthisa, S.; Sooknoi, T.; Ma, Y. G.; Balbuena, P. B.; Resasco, D.E. J. Catal. 2011, 277, 1. doi: 10.1016/j.jcat.2010.10.005
-
[15]
(15) Sitthisa, S.; Pham, T.; Prasomsri, T.; Sooknoi, T.; Mallinson, R.G.; Resasco, D. E. J. Catal. 2011, 280, 17. doi: 10.1016/j.jcat.2011.02.006
-
[16]
(16) Sitthisa, S.; Wei, A.; Resasco, D. E. J. Catal. 2011, 284, 90. doi: 10.1016/j.jcat.2011.09.005
-
[17]
(17) Simon, H. P.; Medlin, J. W. ACS Catal. 2011, 1, 127.
-
[18]
(18) Vorotnikov, V.; Mpourmpakis, G.; Vlachos, D. G. ACS Catal.2012, 2, 2496. doi: 10.1021/cs300395a
-
[19]
(19) Xia, M. Y.; Cao, X. X.; Ni, Z. M.; Shi, W.; Fu, X. W. Chin. J. Catal. 2012, 33, 1000. [夏明玉,曹晓霞, 倪哲明,施炜,付晓微.催化学报, 2012, 33, 1000.]
-
[20]
(20) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015
-
[21]
(21) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[22]
(22) White, J. A.; Bird, D. M.; Payne, M. C.; Stich, I. Phys. Rev. Lett.1994, 73, 1404. doi: 10.1103/PhysRevLett.73.1404
-
[23]
(23) Mai, S. W.; Zhou, G. D.; Li, W. J. Advanced Inorganic Structural Chemistry; Peking University Press: Beijing, 2001;pp 302-303. [麦松威, 周公度,李伟基. 高等无机结构化学.北京:北京大学出版社, 2001: 302-303.]
-
[24]
(24) Mao, J. H.; Ni, Z. M.; Pan, G. X.; Xu, Q. Acta Phys. -Chim. Sin.2008, 24, 2059. [毛江洪, 倪哲明, 潘国祥,胥倩.物理化学学报, 2008, 24, 2059.] doi: 10.3866/PKU.WHXB20081121
-
[25]
(25) Ni, Z. M.; Mao, J. H.; Pan, G. X.; Xu, Q.; Li, X. N. Acta. Phys. -Chim. Sin. 2009, 25, 876. [倪哲明, 毛江洪, 潘国祥,胥倩,李小年.物理化学学报, 2009, 25, 876.] doi: 10.3866/PKU.WHXB20090507
-
[26]
(26) Liu, X. M.; Ni, Z. M.; Yao, P.; Xu, Q.; Mao, J. H.; Wang, Q. Q.Acta Phys. -Chim. Sin. 2010, 26, 1599. [刘晓明, 倪哲明,姚萍,胥倩,毛江洪,王巧巧.物理化学学报, 2010, 26,1599.] doi: 10.3866/PKU.WHXB20100625
-
[27]
(27) vind, N.; Petersen, M.; Fitzgerald, G.; Dominic, K. S.;Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. doi: 10.1016/S0927-0256(03)00111-3
-
[28]
(28) Chen, Z. H.; Ding, K. N.; Xu, X. L.; Li, J. Q. Chin. J. Catal.2010, 31, 49. [陈展虹, 丁开宁, 徐香兰,李俊篯. 催化学报,2010, 31, 49.]
-
[1]
-
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[4]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[5]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[6]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[7]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[8]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[9]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[10]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[11]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[12]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[13]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[14]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[15]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[16]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[17]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[18]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[19]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[20]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[1]
Metrics
- PDF Downloads(638)
- Abstract views(1265)
- HTML views(77)