Citation: NI Zhe-Ming, XIA Ming-Yu, SHI Wei, QIAN Ping-Ping. Adsorption and Decarbonylation Reaction of Furfural on Pt(111) Surface[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1916-1922. doi: 10.3866/PKU.WHXB201307101 shu

Adsorption and Decarbonylation Reaction of Furfural on Pt(111) Surface

  • Received Date: 26 March 2013
    Available Online: 10 July 2013

  • The reaction mechanismof furan formation during decarbonylation of furfural on the Pt(111) plane was investigated by density functional theory generalized gradient approximation calculations with the slab model. The adsorption energy of furfural was calculated to determine preferred adsorption sites on the Pt(111) plane. The revealed possible mechanisms for the decarbonylation of furfural on the Pt(111) plane were studied. The results showed that a furfural molecule loses 0.765 electrons after adsorption on the Pt(111) surface. The d orbitals of the metal surface interact strongly with the π bonds of the furfural ring. This reduced the aromaticity of the furfural ring and the Catoms showed characteristics consistent with sp3 hybridization. The molecular plane of the adsorbate was distorted, and corresponding changes of bond lengths were found. The C―H(O) bonds and―CHO of furfural tilted away from the Pt surface. The calculations showthat furan was a possible product of the decarbonylation reaction. We then searched the transition states (TSs) and reaction potential energy surfaces with the linear and quadratic synchronous transit (LST/QST) complete search. By comparing energy barriers, we obtained the optimal path, which involved furfural forming an acyl intermediate by loss of the Hatom from the branched chain rather than direct decarburization. Furan was then formed by decarburization and hydrogenation of the acyl intermediate. The calculated barrier for the rate-determining step(C4H3O)CO*+*→C4H3O*+ CO* (* is adsorption site) is 127.65 kJ·mol-1.

  • 加载中
    1. [1]

      (1) Schroeder, W. D.; Fontenot, C. J.; Schrader, G. L. J. Catal.2001, 203, 382. doi: 10.1006/jcat.2001.3333

    2. [2]

      (2) Cicmanec, P.; Syslova, K.; Tichy, J. Top. Catal. 2007, 45, 1.doi: 10.1007/s11244-007-0230-y

    3. [3]

      (3) Wildberger, M. D.; Mallat, T.; bel, U.; Baiker, A. Appl. Catal.1998, 168, 69. doi: 10.1016/S0926-860X(97)00345-1

    4. [4]

      (4) Liu, J. Y.; Guo, X. L.; Wang, X. T. Catalyst for Producing FuranfromFurfural Decarbonylation. CN Patent 10 142 2738, 2009-05-06. [刘金廷, 郭新亮,王香婷.一种高效糠醛脱羰制呋喃催化剂的制备: 中国, 10 142 2738[P]. 2009-05-06]

    5. [5]

      (5) Zhang, L.; Yu, L. Y. Catalyst Useful for Producing Furan byFurfural Liquid Phase Ddecarbonylation. CN Patent 10 2000569.A, 2011-04-06. [张龙,于落瀛. 一种糠醛液相脱羰生产呋喃用催化剂及制备方法: 中国, 10 200 0569.A[P]. 2011-04-06]

    6. [6]

      (6) Grandmaison, J. L.; Chantal, P. D.; Kaliaguine, S. C. Fuel 1990,69, 1058. doi: 10.1016/0016-2361(90)90020-Q

    7. [7]

      (7) Sitthisa, S.; Resasco, D. Catal. Lett. 2011, 141, 784. doi: 10.1007/s10562-011-0581-7

    8. [8]

      (8) Yu, L. Y.; Ding, L. W.; Zhang, L. Precious Metals 2011, 32 (3),69. [于落瀛, 丁立微,张龙.贵金属, 2011, 32 (3), 69.

    9. [9]

      (9) Zhang, W.; Zhu, Y. L.; Niu, S. S.; Li, Y. W. J. Mol. Catal. AChem.2011, 335, 71. doi: 10.1016/j.molcata.2010.11.016

    10. [10]

      (10) Xue, L.; Liu, S. W.; Xu, X. L. Chin. J. Mol. Catal. 2002, 16 (2),116. [薛莉,刘淑文, 徐贤伦. 分子催化, 2002, 16 (2), 116.]

    11. [11]

      (11) Vladimir, V. P.; Nathan, M.; Kwangjin, A.; Selim, A.; Gabor, A.S. Nano Lett. 2012, 12, 5196. doi: 10.1021/nl3023127

    12. [12]

      (12) Kwangjin, A.; Nathan, M.; Griffin, K., Vladimir, V. P.; Robert,L. B.; Gabor, A. S. J. Colloid Interface Sci. 2013, 392, 122. doi: 10.1016/j.jcis.2012.10.029

    13. [13]

      (13) Zheng, H. Y.; Zhu, Y. L.; ng, L. Fine Specialty Chem. 2005,13 (12), 7. [郑洪岩, 朱玉雷,龚亮,精细与专用化学品,2005, 13 (12), 7.]

    14. [14]

      (14) Sitthisa, S.; Sooknoi, T.; Ma, Y. G.; Balbuena, P. B.; Resasco, D.E. J. Catal. 2011, 277, 1. doi: 10.1016/j.jcat.2010.10.005

    15. [15]

      (15) Sitthisa, S.; Pham, T.; Prasomsri, T.; Sooknoi, T.; Mallinson, R.G.; Resasco, D. E. J. Catal. 2011, 280, 17. doi: 10.1016/j.jcat.2011.02.006

    16. [16]

      (16) Sitthisa, S.; Wei, A.; Resasco, D. E. J. Catal. 2011, 284, 90. doi: 10.1016/j.jcat.2011.09.005

    17. [17]

      (17) Simon, H. P.; Medlin, J. W. ACS Catal. 2011, 1, 127.

    18. [18]

      (18) Vorotnikov, V.; Mpourmpakis, G.; Vlachos, D. G. ACS Catal.2012, 2, 2496. doi: 10.1021/cs300395a

    19. [19]

      (19) Xia, M. Y.; Cao, X. X.; Ni, Z. M.; Shi, W.; Fu, X. W. Chin. J. Catal. 2012, 33, 1000. [夏明玉,曹晓霞, 倪哲明,施炜,付晓微.催化学报, 2012, 33, 1000.]

    20. [20]

      (20) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015

    21. [21]

      (21) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671

    22. [22]

      (22) White, J. A.; Bird, D. M.; Payne, M. C.; Stich, I. Phys. Rev. Lett.1994, 73, 1404. doi: 10.1103/PhysRevLett.73.1404

    23. [23]

      (23) Mai, S. W.; Zhou, G. D.; Li, W. J. Advanced Inorganic Structural Chemistry; Peking University Press: Beijing, 2001;pp 302-303. [麦松威, 周公度,李伟基. 高等无机结构化学.北京:北京大学出版社, 2001: 302-303.]

    24. [24]

      (24) Mao, J. H.; Ni, Z. M.; Pan, G. X.; Xu, Q. Acta Phys. -Chim. Sin.2008, 24, 2059. [毛江洪, 倪哲明, 潘国祥,胥倩.物理化学学报, 2008, 24, 2059.] doi: 10.3866/PKU.WHXB20081121

    25. [25]

      (25) Ni, Z. M.; Mao, J. H.; Pan, G. X.; Xu, Q.; Li, X. N. Acta. Phys. -Chim. Sin. 2009, 25, 876. [倪哲明, 毛江洪, 潘国祥,胥倩,李小年.物理化学学报, 2009, 25, 876.] doi: 10.3866/PKU.WHXB20090507

    26. [26]

      (26) Liu, X. M.; Ni, Z. M.; Yao, P.; Xu, Q.; Mao, J. H.; Wang, Q. Q.Acta Phys. -Chim. Sin. 2010, 26, 1599. [刘晓明, 倪哲明,姚萍,胥倩,毛江洪,王巧巧.物理化学学报, 2010, 26,1599.] doi: 10.3866/PKU.WHXB20100625

    27. [27]

      (27) vind, N.; Petersen, M.; Fitzgerald, G.; Dominic, K. S.;Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. doi: 10.1016/S0927-0256(03)00111-3

    28. [28]

      (28) Chen, Z. H.; Ding, K. N.; Xu, X. L.; Li, J. Q. Chin. J. Catal.2010, 31, 49. [陈展虹, 丁开宁, 徐香兰,李俊篯. 催化学报,2010, 31, 49.]


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

Metrics
  • PDF Downloads(638)
  • Abstract views(1265)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return