Citation: FAN Xiao-Li, RAN Run-Xin, ZHANG Chao, YANG Yong-Liang. Density Functional Theory Study on the Adsorption of Dodecylthiol on Au(111) Surface[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1907-1915. doi: 10.3866/PKU.WHXB201307022
-
By applying the first-principles methods based on density functional theory and the slab model, we have studied the non-dissociative and dissociated adsorptions of a dodecylthiol (C12H25SH) molecule on Au(111) surface. Based on the calculated results, the fate of the H atom has been analyzed, and the longchain adsorption and short-chain adsorption have been compared. We have performed structure optimizations for a series of initial structures with the S atom located on different sites with different tilt angles. This structure optimizations gave two surface structures before and after the dissociation of S―H; the standing-up and lying-down adsorption structures. Our calculations indicate that the C12H25SH molecule prefers to stay on the top site, the corresponding adsorption energies are 0.35-0.38 eV. The dissociated C12H25S group prefers to adsorb on the bri-fcc site, with adsorption energies of 2.01-2.09 eV. We have compared the non-dissociative C12H25SH/Au(111) and dissociated C12H25S/Au(111) with the H atom adsorbing onto Au and desorbing as H2, and found that the non-dissociative adsorption is more stable. The formation energy and the electronic structure showed that the non-dissociative adsorption belongs to the weak chemisorption, whereas the interaction between the S atom and Au surface becomes much stronger following cleavage of the S―H. A comparison of the adsorption of long-chain thiols on Au(111) surface with that of the short-chain thiols, indicates that the adsorption energies of the long-chain thiols are slightly larger, and the distances between the S atomand the surface Au atoms are slightly shorter.
-
-
[1]
(1) Ulman, A. Chem. Rev. 1996, 96, 1533. doi: 10.1021/cr9502357
-
[2]
(2) Schreiber, F. Prog. Surf. Sci. 2000, 65, 151. doi: 10.1016/S0079-6816(00)00024-1
-
[3]
(3) Schreiber, F. J. Phys.: Condes. Matter 2004, 16, R881.
-
[4]
(4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.;Whitesides, G. M. Chem. Rev. 2005, 105, 1103. doi: 10.1021/cr0300789
-
[5]
(5) Nenchev, G.; Diaconescu, B.; Hagelberg, F.; Pohl, K. Phys. Rev. B 2009, 80, 081401. doi: 10.1103/PhysRevB.80.081401
-
[6]
(6) Chen, W. K.; Cao, M. J.; Liu, S. H.; Xu, Y.; Li, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2005, 21, 903. [陈文凯, 曹梅娟, 刘书红,许莹,李奕,李俊篯. 物理化学学报, 2005, 21, 903.] doi: 10.3866/PKU.WHXB20050816
-
[7]
(7) Cao, M. J.; Chen, W. K.; Liu, S. H.; Lu, C. H.; Xu, Y.; Li, J. Q.Chin. J. Catal. 2006, 27, 223. [曹梅娟, 陈文凯,刘书红, 陆春海,许莹,李俊篯.催化学报, 2006, 27, 223.]
-
[8]
(8) Cao, M. J.; Chen, W. K.; Liu, S. H.; Xu, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2006, 22, 11. [曹梅娟, 陈文凯,刘书红,许莹,李俊篯. 物理化学学报, 2006, 22, 11.] doi: 10.3866/PKU.WHXB20060103
-
[9]
(9) Li, B.; Zeng, C. G.; Li, Q. X.; Yang, J. L.; Hou, J. G.; Zhu, Q. S.J. Chin. Electr. Microsc. Soc. 2003, 22, 189. [李斌,曾长淦,李群祥, 杨金龙, 侯建国, 朱清时. 电子显微学报, 2003, 22,189.]
-
[10]
(10) Yourdshahyan, Y.; Zhang, H. K.; Rappe, A. M. Phys. Rev. B2001, 63, 081405. doi: 10.1103/PhysRevB.63.081405
-
[11]
(11) Vericat, C.; Vela, M. E.; Salvarezza, R. C. Phys. Chem. Chem. Phys. 2005, 7, 3258. doi: 10.1039/b505903h
-
[12]
(12) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2006, 128,10642. doi: 10.1021/ja062006f
-
[13]
(13) Maksymovych, P.; Sorescu, D. C.; Yates, J. T. J. Phys. Chem. B2006, 110, 21161. doi: 10.1021/jp0625964
-
[14]
(14) Maksymovych, P.; Vocnyy, O.; Dougherty, D. B.; Sorescu, D. C.;Yates, J. T. Pro. Surf. Sci. 2010, 85, 206. doi: 10.1016/j.progsurf.2010.05.001
-
[15]
(15) Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C.Chem. Soc. Rev. 2010, 39, 1805. doi: 10.1039/b907301a
-
[16]
(16) Min, J. X.; Fan, X. L.; Cheng, Q. Z.; Chi, Q. Acta Chim. Sin.2011, 69, 789. [闵家祥, 范晓丽,程千忠,池琼.化学学报,2011, 69, 789.]
-
[17]
(17) Carro, P.; Torres, D.; Diaz, R.; Salvarezza, R. C.; Lllas, F.J. Phys. Chem. Lett. 2012, 3, 2159. doi: 10.1021/jz300712g
-
[18]
(18) Li, B.; Zeng, C. G.; Li, Q. X.; Wang, B.; Yuan, L. F.; Wang, H.Q.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. J. Phys. Chem. B 2003,107, 972. doi: 10.1021/jp0261861
-
[19]
(19) Wang, J. G.; Selloni, A. J. Phys. Chem. C 2007, 111, 12149. doi: 10.1021/jp0745891
-
[20]
(20) Nakayz, M.; Shikishima, M.; Shibuta, M.; Hirata, N.; Eguchi,T.; Nakajima, A. ACS Nano 2012, 6, 8728. doi: 10.1021/nn302405r
-
[21]
(21) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
-
[22]
(22) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
-
[23]
(23) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558
-
[24]
(24) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
-
[25]
(25) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.doi: 10.1103/PhysRevB.54.11169
-
[26]
(26) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.doi: 10.1016/0927-0256(96)00008-0
-
[27]
(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
-
[28]
(28) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
-
[29]
(29) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[30]
(30) Nara, J.; Higai, S.; Morikawa, Y.; Ohno, T. J. Chem. Phys. 2004,120, 6705. doi: 10.1063/1.1651064
-
[31]
(31) Fan, X. L.; Chi, Q.; Liu, C.; Lau, W. J. Phys. Chem. C 2012,116, 1001.
-
[32]
(32) Lustemberg, P. G.; Martiarena, M. L.; Martínez, A. E.;Busnen , H. F. Langmuir 2008, 24, 3274. doi: 10.1021/la703306t
-
[33]
(33) Fan, X. L.; Zhang, C.; Liu, Y.; Lau, W. M. J. Phys. Chem. C2012, 116, 19909. doi: 10.1021/jp306812v
-
[34]
(34) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2008, 130,7518. doi: 10.1021/ja800577w
-
[35]
(35) Rajaraman, G.; Caneschi, A.; Gatteschi, D.; Totti, F. Phys. Chem. Chem. Phys. 2011, 13, 3886. doi: 10.1039/c0cp02042g
-
[36]
(36) Tielens, F.; Santos, E. J. Phys. Chem. C 2010, 114, 9444.
-
[37]
(37) ttschalck, J.; Hammer, B. J. Chem. Phys. 2002, 116, 784.
-
[38]
(38) Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[5]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[6]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[7]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[8]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[9]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[10]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[11]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[12]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[13]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[14]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[15]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[16]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[17]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[18]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[19]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[20]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[1]
Metrics
- PDF Downloads(743)
- Abstract views(1187)
- HTML views(23)