Citation: WU Xiao-Min, YUAN Xiao-Hui, XUE Shu-Lei, ZHA Ling-Sheng, WANG Guang-Li, ZHANG Hai-Jun. Research Progress of the Trp-Cage Formation and Its Folding Mechanism[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1842-1850. doi: 10.3866/PKU.WHXB201307011
-
Protein folding is considered one of the most important topics in structural biology. An in-depth understanding of the folding-function relationship is one of the most important subjects for biologists, and is of interest to scientific researchers in other disciplines. The folding of proteins is often completed within the order of milliseconds to seconds, whereas the underlying atomistic details corresponding to structural alterations and intermolecular interactions often occur on the nanosecond or even smaller timescales. Accordingly, the unambiguous description of complicated folding behaviors remains inaccessible to routine experimental and theoretically-calculated resolutions. In this paper, we reviewthe problems that exist in recent experimental and theoretical studies examining the protein folding mechanism. The Trp-cage is a fast-folding mini-protein containing merely 20 amino acid residues, but adopts a well-packed hydrophobic core and tertiary contacts. Herein, we use the Trp-cage as an example and summarize the experimental and theoretical research carried out on the Trp-cage formation and its folding mechanism. The presentation primarily focuses on three aspects: (1) the folding temperature; (2) the folding initiation and proposed folding mechanisms; and (3) the role of key residues and its driving force for the folding of the Trp-cage mini-protein. Finally, we provide some suggestions on how to effectively simplify the complicated interaction networks of the Trp-cage mini-protein and decrease the complexity of the folding mechanism. This helps us to clarify the respective and cooperative contributions of residues involved in the formation of the Trp-cage and its folding dynamics, as well as provide useful insights for folding studies and more efficient rational peptide design.
-
-
[1]
(1) Yan, L. F.; Sun, Z. R. Molecular Structure of Protein; TsinghuaUniversity Press: Beijing, 1999. [阎隆飞,孙之荣.蛋白质分子结构.北京:清华大学出版社, 1999.]
-
[2]
(2) Vendruscolo, M. Curr. Opin. Struct. Biol. 2007, 17, 15. doi: 10.1016/j.sbi.2007.01.002
-
[3]
(3) Fink, A. L. Curr. Opin. Struct. Biol. 2005, 15, 35. doi: 10.1016/j.sbi.2005.01.002
-
[4]
(4) Karplus, M.; McCammon, J. A. Nat. Struct. Biol. 2002, 9, 646.doi: 10.1038/nsb0902-646
-
[5]
(5) Parak, F. G. Rep. Prog. Phys. 2003, 66, 103. doi: 10.1088/0034-4885/66/2/201
-
[6]
(6) Thomas, P. J.; Qu, B. H.; Pedersen, P. L. Trends Biochem. Sci.1995, 20, 456. doi: 10.1016/S0968-0004(00)89100-8
-
[7]
(7) Gellman, S. H.; Woolfson, D. N. Nat. Struct. Biol. 2002, 9, 408.doi: 10.1038/nsb0602-408
-
[8]
(8) Chellgren, B. W.; Creamer, T. P. Biochemistry 2004, 43, 5864.doi: 10.1021/bi049922v
-
[9]
(9) Woody, R. Adv. Biophys. Chem. 1992, 2, 37.
-
[10]
(10) Zhang, Z. Q. Acta Phys. -Chim. Sin. 2012, 28, 2381. [张竹青.物理化学学报, 2012, 28, 2381.] doi: 10.3866/PKU.WHXB201209144
-
[11]
(11) Chen, K. X.; Jiang, H. L.; Ji, R. Y. Computer Aided Drug Design——Principle, Methods and Application; ShanghaiScientific Technology Press: Shanghai, 2000. [陈凯先, 蒋华良, 嵇汝运.计算机辅助药物设计——原理、方法及应用. 上海: 上海科学技术出版社, 2000.]
-
[12]
(12) Thirumalai, D.; Liu, Z. X.; O'Brien, E. P.; Reddy, G. Curr. Opin. Struct. Biol. 2013, 23, 22. doi: 10.1016/j.sbi.2012.11.010
-
[13]
(13) Cai, W. S.; Chipot, C. Acta Chim. Sin. 2013, 71, 159. [蔡文生,Chipot, C.化学学报, 2013, 71, 159.] doi: 10.6023/A12110930
-
[14]
(14) Fuentes, G.; Nederveen, A. J.; Kaptein, R.; Boelens, R.; Bonvin,A. M. J. Biomol. NMR 2005, 33, 175. doi: 10.1007/s10858-005-3207-9
-
[15]
(15) Wong, K. B.; Clarke, J.; Bond, C. J.; Neira, J. L.; Freund, S. M.;Fersht, A. R.; Daggett, V. J. Mol. Biol. 2000, 296, 1257. doi: 10.1006/jmbi.2000.3523
-
[16]
(16) Engen, J. R. Anal. Chem. 2009, 81, 7870. doi: 10.1021/ac901154s
-
[17]
(17) Iacob, R. E; Engen, J. R. J. Am. Soc. Mass Spectrom. 2012, 23,1003. doi: 10.1007/s13361-012-0377-z
-
[18]
(18) Dill, K. A.; Ozkan, B. S.; Shell, M.; Weikl, T. R. Ann. Rev. Biophys. 2008, 37, 289. doi: 10.1146/annurev.biophys.37.092707.153558
-
[19]
(19) Onuchic, J. N.; Wolyness, P. G. Curr. Opin. Struct. Biol. 2004,14, 70. doi: 10.1016/j.sbi.2004.01.009
-
[20]
(20) Rizzuti, B.; Daggett, V. Arch. Biochem. Biophys. 2013, 531,128. doi: 10.1016/j.abb.2012.12.015
-
[21]
(21) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science2011, 334, 517. doi: 10.1126/science.1208351
-
[22]
(22) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J.K.; Shan, Y.; Wriggers, W. Science 2010, 330, 341. doi: 10.1126/science.1187409
-
[23]
(23) Chan, H. S.; Zhang, Z.; Wallin, S.; Liu, Z. Annu. Rev. Phys. Chem. 2011, 62, 301. doi: 10.1146/annurev-physchem-032210-103405
-
[24]
(24) odfellow, J. M.; Moss, D. S. Computer Modeling of Biomolecular Process; Bllis Horwood: NewYork, 1992.
-
[25]
(25) Warshel, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions; Jonh Wilev&Sons: NewYork, 1991.
-
[26]
(26) Leopold, P.; Montal, M.; Onuchic, J. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 8721. doi: 10.1073/pnas.89.18.8721
-
[27]
(27) Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G.Proteins 1995, 21, 167.
-
[28]
(28) Mirny, L. A.; Shakhnovich, E. I. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 361. doi: 10.1146/annurev.biophys.30.1.361
-
[29]
(29) Dill, K. A.; Chan, H. S. Nat. Struct. Biol. 1997, 4, 10. doi: 10.1038/nsb0197-10
-
[30]
(30) Anfinsen, C. B. Science 1973, 181, 223. doi: 10.1126/science.181.4096.223
-
[31]
(31) Thukral, L.; Smith, J. C.; Daidone, I. J. Am. Chem. Soc. 2009,131, 18147. doi: 10.1021/ja9064365
-
[32]
(32) Ma, B.; Nussinov, R. J. Mol. Biol. 2000, 296, 1091. doi: 10.1006/jmbi.2000.3518
-
[33]
(33) Wu, X. M.; Yang, G.; Zu, Y. G.; Zhou, L. J. Comput. Biol. Chem. 2012, 38, 1. doi: 10.1016/j.compbiolchem.2012.02.003
-
[34]
(34) Liu, F. F.; Dong, X. Y.; Sun, Y. J. Mol. Graph. Model. 2008, 27,421. doi: 10.1016/j.jmgm.2008.07.002
-
[35]
(35) Li, W.; Zhang, J.; Su, Y.; Wang, J.; Qin, M.; Wang, W. J. Phys. Chem. B 2007, 111, 13814. doi: 10.1021/jp076213t
-
[36]
(36) Lazo, N. D.; Grant, M. A.; Condron, M. C.; Rigby, A. C.;Teplow, D. B. Protein Sci. 2005, 14, 1581.
-
[37]
(37) Guarnera, E.; Pellarin, R.; Caflisch, A. Biophys. J. 2009, 97,1737. doi: 10.1016/j.bpj.2009.06.047
-
[38]
(38) Cecchini, M.; Curcio, R.; Pappalardo, M.; Melki, R.; Caflisch,A. J. Mol. Biol. 2006, 357, 1306. doi: 10.1016/j.jmb.2006.01.009
-
[39]
(39) Convertino, M.; Pellarin, R.; Catto, M.; Carotti, A.; Caflisch, A.Protein Sci. 2009, 18, 792.
-
[40]
(40) Scherzer-Attali, R.; Pellarin, R.; Convertino, M.; Frydman-Marom, A.; E z-Matia, N.; Peled, S.; Levy-Sakin, M.; Shalev,D. E.; Caflisch, A.; Gazit, E.; Segal, D. PloS One 2010, 5,e11101.
-
[41]
(41) Terwilliger, T. C.; Eisenberg, D. J. Biol. Chem. 1982, 257, 6016.
-
[42]
(42) Tanizaki, S.; Clifford, J.; Connelly, B. D.; Feig, M. Biophys. J.2008, 94, 747. doi: 10.1529/biophysj.107.116236
-
[43]
(43) Predeus, A. V.; Gul, S.; pal, S. M.; Feig, M. J. Phys. Chem. B2012, 116, 8610. doi: 10.1021/jp300129u
-
[44]
(44) Shao, Q.; Zhu, W. L.; Gao, Y. Q. J. Phys. Chem. B 2012, 116,13848. doi: 10.1021/jp307684h
-
[45]
(45) Halabis, A.; Zmudzinska, W.; Liwo, A.; O?dziej, S. J. Phys. Chem. B 2012, 116, 6898. doi: 10.1021/jp212630y
-
[46]
(46) Adams, C. M.; Kjeldsen, F.; Zubarev, R. A.; Budnik, B. A.;Haselmann, K. F. J. Am. Soc. Mass Spectrom. 2004, 15,1087. doi: 10.1016/j.jasms.2004.04.026
-
[47]
(47) Miklos, A. C.; Sarkar, M.; Wang, Y.; Pielak, G. J. J. Am. Chem. Soc. 2011, 133, 7116. doi: 10.1021/ja200067p
-
[48]
(48) Feig, M.; Sugita, Y. J. Phys. Chem. B 2012, 116, 599. doi: 10.1021/jp209302e
-
[49]
(49) Klein-Seetharaman, J.; Oikawa, M.; Grimshaw, S. B.;Wirmer,J.; Duchardt, E.; Ueda, T.; Imoto, T.; Smith, L. J.; Dobson, C.M.; Schwalbe, H. Science 2002, 295, 1719. doi: 10.1126/science.1067680
-
[50]
(50) Radford, S. E.; Dobson, C. M.; Evans, P. A. Nature 1992, 358,302. doi: 10.1038/358302a0
-
[51]
(51) Xu, J.; Baase, W. A.; Baldwin, E.; Matthews, B. W. Protein Sci.1998, 7, 158.
-
[52]
(52) Li, W.; Zhang, J.; Wang, J.; Wang, W. J. Am. Chem. Soc. 2008,130, 892. doi: 10.1021/ja075302g
-
[53]
(53) Palmer, A. G., III; Rance, M.; Wright, P. E. J. Am. Chem. Soc.1991, 113, 4371. doi: 10.1021/ja00012a001
-
[54]
(54) Gronenborn, A. M.; Filpula, D. R.; Essig, N. Z.; Achari, A.;Whitlow, M.; Wingfield, P. T.; Clore, G. M. Science 1991, 253,657. doi: 10.1126/science.1871600
-
[55]
(55) Odaert, B.; Jean, F.; Boutillon, C.; Buisine, E.; Melnyk, O.;Tartar, A.; Lippens, G. Protein Sci. 1999, 8, 2773.
-
[56]
(56) Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82. doi: 10.1126/science.278.5335.82
-
[57]
(57) McCallister, E. L.; Alm, E.; Baker, D. Nat. Struct. Biol. 2000, 7,669. doi: 10.1038/77971
-
[58]
(58) Kmiecik, S.; Kolinski, A. Biophys. J. 2008, 94, 726. doi: 10.1529/biophysj.107.116095
-
[59]
(59) Hu, J. P.; He, H. Q.; Jiao, X.; Chang, S. Mol. Simulat. 2013, doi: 10.1080/08927022.2013.773431
-
[60]
(60) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110,1657. doi: 10.1021/ja00214a001
-
[61]
(61) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760
-
[62]
(62) Christen, M.; Hunenberger, P. H.; Bakowies, D.; Baron, R.;Bürgi, R.; Geerke, D. P.; Heinz, T. N.; Kastenholz, M. A.;Kräutler, V.; Oostenbrink, C.; Peter, C.; Trzesniak, D.; vanGunsteren, W. F. J. Comput. Chem. 2005, 26, 1719.
-
[63]
(63) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q
-
[64]
(64) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, C.; Ghio, C.;Ala na, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc. 1984,106, 765. doi: 10.1021/ja00315a051
-
[65]
(65) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.
-
[66]
(66) Halgren, T. A.; Damm, W. Curr. Opin. Struct. Biol. 2001, 11,236. doi: 10.1016/S0959-440X(00)00196-2
-
[67]
(67) Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.; Cao,Y. X.; Murphy, R. B.; Zhou, R.; Halgren, T. A. J. Comput. Chem. 2002, 23, 1515. doi: 10.1002/jcc.10125
-
[68]
(68) Jorgensen, W. L. J. Chem. Theory Comput. 2007, 3, 1877. doi: 10.1021/ct700252g
-
[69]
(69) Wu, X. M.; Yang, G.; Zhou, L. J. Theor. Chem. Acc. 2012, 131,1229. doi: 10.1007/s00214-012-1229-4
-
[70]
(70) Wu, X. M.; Yang, G.; Zu, Y. G.; Fu, Y. J.; Zhou, L. J.; Yuan, X.H. Mol. Simulat. 2012, 38, 161. doi: 10.1080/08927022.2011.610795
-
[71]
(71) Neidigh, J. W.; Fesinmeyer, R. M.; Andersen, N. H. Nat. Struct. Biol. 2002, 9, 425. doi: 10.1038/nsb798
-
[72]
(72) Qiu, L.; Pabit, S. A.; Roitberg, A. E.; Hagen, S. J. J. Am. Chem. Soc. 2002, 124, 12952. doi: 10.1021/ja0279141
-
[73]
(73) Neuweiler, H.; Doose, S.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16650. doi: 10.1073/pnas.0507351102
-
[74]
(74) Streicher, W. W.; Makhatadze, G. I. Biochemistry 2007, 46,2876. doi: 10.1021/bi602424x
-
[75]
(75) Iavarone, A. T.; Parks, J. H. J. Am. Chem. Soc. 2005, 127,8606. doi: 10.1021/ja051788u
-
[76]
(76) Qiu, L. L.; Hagen, S. J. Chem. Phys. 2004, 307, 243. doi: 10.1016/j.chemphys.2004.04.030
-
[77]
(77) Qiu, L. L.; Hagen, S. J. J. Am. Chem. Soc. 2004, 126, 3398. doi: 10.1021/ja049966r
-
[78]
(78) Ahmed, Z.; Beta, I. A.; Mikhonin, A. V.; Asher, S. A. J. Am. Chem. Soc. 2005, 127, 10943. doi: 10.1021/ja050664e
-
[79]
(79) Paschek, D.; Nymeyer, H.; Garcia, A. E. J. Struct. Biol. 2007,157, 524. doi: 10.1016/j.jsb.2006.10.031
-
[80]
(80) Pitera, J. W.; Swope, W. Proc. Natl. Acad. Sci. U. S. A. 2003,100, 7587. doi: 10.1073/pnas.1330954100
-
[81]
(81) Zhou, R. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13280. doi: 10.1073/pnas.2233312100
-
[82]
(82) Chowdhury, S.; Lee, M. C.; Duan, Y. J. Phys. Chem. B 2004,108, 13855. doi: 10.1021/jp0478920
-
[83]
(83) Hu, Z.; Tang, Y.; Wang, H.; Zhang, X.; Lei, M. Arch. Biochem. Biophys. 2008, 475, 140. doi: 10.1016/j.abb.2008.04.024
-
[84]
(84) Juraszek, J.; Bolhuis, P. G. Proc. Natl. Acad. Sci. U. S. A. 2006,103, 15859. doi: 10.1073/pnas.0606692103
-
[85]
(85) Day, R.; Paschek, D.; García, A. E. Proteins 2010, 78, 1889.
-
[86]
(86) Duan, L. L.; Mei, Y.; Li, Y. L.; Zhang, Q. G.; Zhang, D. W.;Zhang, J. Z. H. Sci. China Ser. B 2010, 53, 196. doi: 10.1007/s11426-009-0196-7
-
[87]
(87) Mei, Y.; Wei, C. Y.; Yip, Y. M.; Ho, C. Y.; Zhang, J. Z. H.;Zhang, D. W. Theor. Chem. Acc. 2012, 131, 1168. doi: 10.1007/s00214-012-1168-0
-
[88]
(88) Mok, K. H.; Kuhn, L. T.; ez, M.; Day, I. J.; Lin, J. C.;Andersen, N. H.; Hore, P. J. Nature 2007, 447, 106. doi: 10.1038/nature05728
-
[89]
(89) Brylinski, M.; Konieczny, L.; Roterman, I. Comput. Biol. Chem. 2006, 30, 255. doi: 10.1016/j.compbiolchem.2006.04.007
-
[90]
(90) Arai, M.; Kondrashkina, E.; Kayatekin, C.; Matthews, C. R.;Iwakura, M.; Bilsel, O. J. Mol. Biol. 2007, 368, 219. doi: 10.1016/j.jmb.2007.01.085
-
[91]
(91) Dill, K. A.; Fiebig, K. M.; Chan, H. S. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 1942. doi: 10.1073/pnas.90.5.1942
-
[92]
(92) Barua, B.; Lin, J. C.; Williams, V. D.; Kummler, P.; Neidigh, J.W.; Andersen, N. H. Protein Eng. Des. Sel. 2008, 21, 171. doi: 10.1093/protein/gzm082
-
[93]
(93) Wu, X. M.; Zu, Y. G.; Yang, Z. W.; Fu, Y. J.; Zhou, L. J.; Yang,G. Acta Phys. -Chim. Sin. 2009, 25, 773. [吴晓敏, 祖元刚,杨志伟, 付玉杰,周丽君,杨刚.物理化学学报, 2009, 25,773.] doi: 10.3866/PKU.WHXB20090333
-
[94]
(94) Wu, X. M.; Yang, G.; Zu, Y. G.; Fu, Y. J.; Yuan, X. H. Comput. Theor. Chem. 2011, 973 (1-3), 1.
-
[95]
(95) Yao, X. Q.; She, Z. S. Biochem. Biophys. Res. Commun. 2008,373, 64. doi: 10.1016/j.bbrc.2008.05.179
-
[96]
(96) Gao, M.; Zhu, H. Q.; Yao, X. Q.; She, Z. S. Biochem. Biophys. Res. Commun. 2010, 392, 95. doi: 10.1016/j.bbrc.2010.01.003
-
[97]
(97) Gao, M.; Yao, X. Q.; She, Z. S.; Liu, Z. R.; Zhu, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 1998. [高萌, 姚新秋, 佘振苏,刘志荣, 朱怀球.物理化学学报, 2010, 26, 1998.] doi: 10.3866/PKU.WHXB20100733
-
[98]
(98) Bunagan, M. R.; Yang, X.; Saven, J. G.; Gai, F. J. Phys. Chem. B 2006, 110, 3759.
-
[99]
(99) Day, R.; Bennion, B. J.; Ham, S.; Daggett, V. J. Mol. Biol.2002, 322, 189. doi: 10.1016/S0022-2836(02)00672-1
-
[100]
(100) Zhou, R. H.; Berne, B. J.; Germain, R. Proc. Nat. Acad. Sci. U. S. A. 2001, 98, 14931. doi: 10.1073/pnas.201543998
-
[101]
(101) Settanni, G.; Fersht, A. R. Biophys. J. 2008, 94, 4444. doi: 10.1529/biophysj.107.122606
-
[102]
(102) Kony, D. B.; Hünenberger, P. H.; van Gunsteren, W. F. Protein Sci. 2007, 16, 1101.
-
[103]
(103) Wroblowski, B.; Diaz, J. F.; Heremans, K.; Engelborghs, Y.Proteins 1996, 25, 446.
-
[104]
(104) Wang, J. H.; Zhang, Z. Y.; Liu, H. Y.; Shi, Y. Y. Acta Biophys. Sin. 2004, 20, 315. [王吉华,张志勇, 刘海燕, 施蕴渝. 生物物理学报, 2004, 20, 315.]
-
[105]
(105) Hillson, N.; Onuchic, J. N.; García, A. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 14848. doi: 10.1073/pnas.96.26.14848
-
[106]
(106) Bennion, B. J.; Daggett, V. Proc. Natl. Acad. Sci. U. S. A.2003, 100, 5142. doi: 10.1073/pnas.0930122100
-
[107]
(107) Rogne, P.; Ozdowy, P.; Richter, C.; Saxena, K.; Schwalbe, H.;Kuhn, L. T. PloS One 2012, 7, e41301.
-
[108]
(108) Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub,H. E. Science 1997, 276, 1109. doi: 10.1126/science.276.5315.1109
-
[109]
(109) Fernandez, J. M.; Li, H. Science 2004, 303, 1674. doi: 10.1126/science.1092497
-
[110]
(110) Karsai, á.; Kellermayer, M. S.; Harris, S. P. Biophys. J. 2011,101, 1968. doi: 10.1016/j.bpj.2011.08.030
-
[111]
(111) Borgia, A.; Steward, A.; Clarke, J. Angew. Chem. Int. Edit.2008, 47, 6900. doi: 10.1002/anie.v47:36
-
[112]
(112) Garcia-Manyes, S.; Dougan, L.; Badilla, C. L.; Brujic, J.;Fernandez, J. M. Proc. Natl. Acad. Sci. U. S. A. 2009, 106,10534. doi: 10.1073/pnas.0901213106
-
[113]
(113) Wu, X. M.; Yang, G.; Zu, Y. G.; Yang, Z. W.; Zhou, L. J. In Silico Biol. 2009, 9, 271.
-
[114]
(114) Yang, G.; Wu, X. M.; Zu, Y. G.; Yang, Z. W.; Zhou, L. J.J. Theor. Comput. Chem. 2009, 8, 317.
-
[1]
-
-
[1]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[2]
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
-
[3]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[4]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[5]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[6]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[7]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[10]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[11]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[12]
Qiang Xu , Rong Zhang , Liyan Zhang , Jinxuan Liu , Shuo Wu , Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018
-
[13]
Yongqing Kuang , Jie Liu , Jianjun Feng , Wen Yang , Shuanglian Cai , Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012
-
[14]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[15]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[16]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[17]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[18]
Ping Cai , Yaxian Zhu , Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027
-
[19]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[20]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[1]
Metrics
- PDF Downloads(1051)
- Abstract views(851)
- HTML views(18)