Citation:
CHI Ting-Yu, LI Han, WANG Geng-Chao. Hierarchically Porous Carbon/DMcT/PEDOT-PSS Ternary Composite as a Cathode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica,
;2013, 29(09): 1981-1988.
doi:
10.3866/PKU.WHXB201306272
-
Activated hierarchically porous carbon (aHPC) was fabricated by calcination, etching and KOH activation using phenol-formaldehyde resin (PF) as the carbon precursor and nano-CaCO3 dispersion as the double pore-forming agent. On this basis, the aHPC/2,5-dimercapto-1,3,4-thiadiazole (DMcT) composite was prepared through a solution immersion method using aHPC as the substrate, and poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate) (PEDOT-PSS) was coated subsequently onto the surface of aHPC/DMcT by in situ oxidative polymerization to prepare the aHPC/DMcT/PEDOT-PSS composite. The structure, morphology, and electrochemical properties of the composite were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and electrochemical measurements. The results showed that the amount of the functional groups in aHPC pores increased after HPC was activated by KOH, resulting in an enhancement (52%) of the adsorption of DMcT. Moreover, almost all of the DMcT was absorbed into the aHPC pores. It was found that the initial discharge capacity of the aHPC/DMcT composite was 236 mAh·g-1 and its specific capacity remained at 65 mAh·g-1 after 20 cycles. For comparison, with a surface coated with a layer of PEDOT-PSS conductive film, the initial discharge capacity of the aHPC/DMcT/PEDOT-PSS composite was up to 280 mAh·g-1 and it remained at 138 mAh·g-1 after 20 cycles (49.1% capacity retention).
-
-
-
[1]
(1) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
-
[2]
(2) Yin, L. C.; Wang, J. L.; Lin, F. J.; Yang, J.; Nuli, Y. Energy Environ. Sci. 2012, 5, 6966. doi: 10.1039/c2ee03495f
-
[3]
(3) Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H.K. J. Power Sources 2011, 196 (16), 7030. doi: 10.1016/j.jpowsour.2010.09.106
-
[4]
(4) Xin, S.; Guo, Y. G.; Wan, L. J. Accounts Chem. Res. 2012, 45 (10), 1759. doi: 10.1021/ar300094m
-
[5]
(5) Visco, S. J.; DeJonghe, L. C. J. Electrochem. Soc. 1988, 135 (12), 2905. doi: 10.1149/1.2095460
-
[6]
(6) Yu, L.; Wang, X. H.; Li, J.; Jing, X. B.; Wang, F. S. Chem. J. Chin. Univ. 2000, 21 (2), 311. [于雷, 王献红, 李季, 景遐斌, 王佛松.高等学校化学学报, 2000, 21 (2), 311.]
-
[7]
(7) Zhang, J. H.; Zhang, Y. S.; Zheng, M. P.; Qi, L.; Feng, B.; Li, L.Acta Phys. -Chim. Sin. 2007, 23 (Supp), 51. [张敬华, 张永生, 郑绵平, 其鲁,冯波,李立.物理化学学报, 2007, 23 (Supp), 51.] doi: 10.3866/PKU.WHXB2007Supp12
-
[8]
(8) Henderson, J. C.; Kiya, Y.; Hutchison, G. R.; Abruna, H. D.J. Phys. Chem. C 2008, 112 (10), 3989. doi: 10.1021/jp076774k
-
[9]
(9) Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Nature 1995,373, 598. doi: 10.1038/373598a0
-
[10]
(10) Xue, L. J.; Li, J. X.; Hu, S. Q.; Zhang, M. X.; Zhou, Y. H.;Zhan, C. M. Electrochem. Commun. 2003, 5 (10), 903. doi: 10.1016/j.elecom.2003.08.018
-
[11]
(11) Kiya, Y.; Hutchison, G. R.; Henderson, J. C.; Sarukawa, T.;Hatozaki, O.; Oyama, N.; Abruña, H. D. Langmuir 2006, 22 (25), 10554. doi: 10.1021/la061213q
-
[12]
(12) Kiya, Y.; Iwata, A.; Sarukawa, T.; Henderson, J. C.; Abruña, H.D. J. Power Sources 2007, 173, 522. doi: 10.1016/j.jpowsour.2007.04.086
-
[13]
(13) Chi, T. Y.; Li, H.; Li, X. W.; Bao, H.; Wang, G. C. Electrochim. Acta 2013, 96, 206. doi: 10.1016/j.electacta.2013.02.100
-
[14]
(14) Canobre, S. C.; Almeida, D. A. L.; Fonseca, C. P.; Neves, S.Electrochem. Acta 2009, 54 (26), 6383. doi: 10.1016/j.electacta.2009.06.002
-
[15]
(15) Jin, L. F.;Wang, G. C.; Li, X. W.; Li, L. B. J. Appl. Electrochem.2011, 41 (4), 377. doi: 10.1007/s10800-010-0246-z
-
[16]
(16) Ortega, P.; Vera, L.; Guzman, M. Macromol. Chem. Phys. 1997,198 (9), 2949. doi: 10.1002/macp.1997.021980923
-
[17]
(17) Park, J. E.; Park, S. G.; Koukitu, A.; Hatozaki, O.; Oyama, N.Synth. Met. 2004, 140 (2-3), 121. doi: 10.1016/j.synthmet.2003.04.001
-
[18]
(18) Wang, G. C.; Jin, L. F.; Ye, J. K.; Li, X. W. Mater. Chem. Phys.2010, 122 (1), 224. doi: 10.1016/j.matchemphys.2010.02.038
-
[19]
(19) Xing, W.; Huang, C. C.; Zhuo, S. P.; Yuan, X.; Wang, G. Q.;Hulicova-Jurcakova, D.; Yan, Z. F.; Lu, G. Q. Carbon 2009, 47 (7), 1715. doi: 10.1016/j.carbon.2009.02.024
-
[20]
(20) Yi, J.; Li, X. P.; Hu, S. J.; Li, W. S.; Zhou, L.; Xu, M. Q.; Lei, J.F.; Hao, L. S. J. Power Sources 2011, 196 (16), 6670. doi: 10.1016/j.jpowsour.2010.12.017
-
[21]
(21) Hasegawa, G.; Kanamori, K.; Nakanishi, K. Microporous Mesoporous Mat. 2012, 155 (1), 265. doi: 10.1016/j.2012.02.001
-
[22]
(22) Yang, J.; Zhou, X. Y.; Zou, Y. L. ; Tang, J. J. Electrochim. Acta2011, 56 (24), 8576. doi: 10.1016/j.electacta.2011.07.047
-
[23]
(23) Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S.M.; Sun, X. G.; Dai, S. Adv. Mater. 2011, 23 (40), 4661. doi: 10.1002/adma.201102032
-
[24]
(24) Kim, Y.; Jo, C.; Lee, J.; Lee, C. W.; Yoon, S. J. Mater. Chem.2012, 22, 1453. doi: 10.1039/c1jm15053g
-
[25]
(25) Pope, J. M.; Sato, T.; Shoji, E.; Oyama, N.;White, K. C.; Buttry,D. A. J. Electrochem. Soc. 2002, 149 (7), A939. doi: 10.1149/1.1482768
-
[26]
(26) Sun, X. M.; Li, Y. D. Angew. Chem. Int. Edit. 2004, 43 (5), 597.doi: 10.1002/anine.200353212
-
[27]
(27) Han, Y. Q.; Lu, Y. Synth. Met. 2008, 158 (19-20), 744. doi: 10.1016/j.synthmet.2008.04.028
-
[28]
(28) Li, J. X.; Zhan, H.; Zhou, Y. H. Electrochem. Commun. 2003, 5 (7), 555. doi: 10.1016/S1388-2481(03)00121-8
-
[1]
-
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[3]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[4]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[5]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[6]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[9]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[10]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[11]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[12]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[13]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[14]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[15]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[16]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[17]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[18]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[19]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[20]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[1]
Metrics
- PDF Downloads(807)
- Abstract views(1405)
- HTML views(2)