Citation: CHEN Zong-Yuan, ZHANG Rui, YANG Xing-Long, WU Wang-Suo, GUO Zhi-Jun, LIU Chun-Li. Adsorption of Co(Ⅱ) and Ni(Ⅱ) on Beishan Granite:Surface Complexation Model and Linear Free Energy Relationship[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 2019-2026. doi: 10.3866/PKU.WHXB201306271 shu

Adsorption of Co(Ⅱ) and Ni(Ⅱ) on Beishan Granite:Surface Complexation Model and Linear Free Energy Relationship

  • Received Date: 29 March 2013
    Available Online: 27 June 2013

    Fund Project: 国家自然科学基金(91226113, 11075006, 91026010) (91226113, 11075006, 91026010)核设施退役和放射性废物治理科研专项(科工计[2012]494号, [2007]840号, [2012]851号) (科工计[2012]494号, [2007]840号, [2012]851号)

  • The adsorption of Co(Ⅱ) and Ni(Ⅱ) on crushed Beishan granite (BS03, 600 m) was studied by a batch experimental method. The distribution coefficient (Kd) was found to vary as a function of the pH, ionic strength, and the initial concentrations of Co(Ⅱ) and Ni(Ⅱ). In the low pH range, the Kd values of Co(Ⅱ) and Ni(Ⅱ) decreased significantly as the ionic strength increased, whereas the effect of the ionic strength was weak in the high pH range. The adsorption of Co(Ⅱ) and Ni(Ⅱ) on granite was quantitatively interpreted by a model with one cation exchange reaction and two inner-sphere surface complexation reactions. A linear free energy relationship (LFER) between the equilibrium constants (K) of the surface complexation reactions and the hydrolysis stability constants of the divalent transition metals (OHK) was established. Predictions based on the LFER are in od agreement with the experimental results for the adsorption of Pb(Ⅱ) and Cu(Ⅱ) on granite.

  • 加载中
    1. [1]

      (1) Dong, D. M.; Ji, L.; Hua, X. Y.; Li, Y.; Zheng, N. Chem. J. Chin. Univ. 2004, 25, 247. [董德明,纪亮,花修艺,李鱼,郑娜.高等学校化学学报, 2004, 25, 247.]

    2. [2]

      (2) Sidhu, P.; Gilkes, R.; Posner, A. Journal of Inorganic and Nuclear Chemistry 1978, 40, 429. doi: 10.1016/0022-1902(78)80418-7

    3. [3]

      (3) Pyrzynska, K. TrAC Trends in Analytical Chemistry 2010, 29,718. doi: 10.1016/j.trac.2010.03.013

    4. [4]

      (4) Lesage, E.; Mundia, C.; Rousseau, D. P. L.; Van de Moortel, A.M. K.; Du Laing, G.; Meers, E.; Tack, F. M. G.; De Pauw, N.;Verloo, M. G. Ecological Engineering 2007, 30, 320. doi: 10.1016/j.ecoleng.2007.04.007

    5. [5]

      (5) Harter, R. Soil Science Society of America Journal 1992, 56,444. doi: 10.2136/sssaj1992.03615995005600020017x

    6. [6]

      (6) Alvarez-Puebla, R. A.; Valenzuela-Calahorro, C.; Garrido, J. J.Langmuir 2004, 20, 3657. doi: 10.1021/la0363231

    7. [7]

      (7) Anderson, P.; Christensen, T. European Journal of Soil Science1988, 39, 15. doi: 10.1111/ejs.1988.39.issue-1

    8. [8]

      (8) Gao, S.; Walker, W. J.; Dahlgren, R. A.; Bold, J. Water, Air Soil Pollution 1997, 93, 331.

    9. [9]

      (9) Jeon, B. H.; Dempsey, B. A.; Bur s, W.D.; Royer, R.A. Water Research 2003, 37, 4135. doi: 10.1016/S0043-1354(03)00342-7

    10. [10]

      (10) Vengris, T. Applied Clay Science 2001, 18, 183. doi: 10.1016/S0169-1317(00)00036-3

    11. [11]

      (11) Wang, J.; Fan, X. H.; Xu, G. Q.; Zheng, H. L. Geological Disposal of High Level Radioactive Waste in China: Progress in the Last Decade (1991-2000); Atomic Energy Press: Beijing,2004; pp 1-12. [王驹, 范显华. 徐国庆,郑华铃. 中国高放废物地质处置十年进展.北京:原子能出版社, 2004: 1-12.]

    12. [12]

      (12) Chen, T.; Sun, M.; Li, C.; Tian, W. Y.; Liu, X. Y.; Wang, L. H.;Wang, X. Y.; Liu, C. L. Radiochimica Acta 2010, 98, 301. doi: 10.1524/ract.2010.1717

    13. [13]

      (13) Chen, T.; Tian, W. Y.; Sun, M.; Li, C.; Liu, X. Y.; Wang, L. H.;Wang, X. Y.; Liu, C. L. Chin. J. Inorg. Chem. 2009, 25, 761.[陈涛, 田文宇,孙茂,黎春,刘晓宇, 王路化, 王祥云, 刘春立.无机化学学报, 2009, 25, 761.]

    14. [14]

      (14) Liu, C. L.; Wang, X. Y.; Li, S. S.; Wang, Z. M.; Gao, H.; Li, B.;Wen, R. Y.; Wang, H. F.; Tang, L. T.; Xin, C. T. Radiochimica Acta 2001, 89, 639. doi: 10.1524/ract.2001.89.10.639

    15. [15]

      (15) Guo, Z. J.; Chen, Z. Y.;Wu, W. S.; Liu, C. L.; Chen, T.; Tian, W.Y.; Li, C. Sci. Chin. Ser. B-Chem. 2011, 41, 907. [郭治军, 陈宗元,吴王锁, 刘春立,陈涛,田文宇,黎春.中国科学: 化学, 2011, 41, 907.]

    16. [16]

      (16) Guo, Z. J.; Chen, Z. Y.;Wu, W. S.; Liu, C. L.; Chen, T.; Tian, W.Y.; Li, C. Acta Phys. -Chim. Sin. 2011, 27, 2222. [郭治军,陈宗元,吴王锁, 刘春立,陈涛,田文宇,黎春. 物理化学学报, 2011, 27, 2222.] doi: 10.3866/PKU.WHXB20110918

    17. [17]

      (17) Bradbury, M. H.; Baeyens, B. Geochimica et Cosmochimica Acta 2005, 69, 875. doi: 10.1016/j.gca.2004.07.020

    18. [18]

      (18) Bradbury, M. H.; Baeyens, B. Geochimica et Cosmochimica Acta 2009, 73, 1004. doi: 10.1016/j.gca.2008.11.016

    19. [19]

      (19) Parkhurst, D. L.; Appelo, C. A. J. Users Guide to Phreeqc: A Computer Program for Speciation, Batch Reaction, Onedimensional Transport, and Inverse Geochemical Calculations,version 2; U.S. Geological Survey: Earth Science InformationCenter, Water-resources investigations Report; Denver, USA,1999; pp 99-4259.

    20. [20]

      (20) Parkhurst, D. L.; Appelo, C. A. J. minteq.v4.dat. http://www.brr.cr.usgs. v/projects/GWC_coupled/phreeqc/ (accessed Oct 27,2008).

    21. [21]

      (21) Guo, Z.; Xu, J.; Shi, K.; Tang, Y.; Wu, W.; Tao, Z. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009,339, 126. doi: 10.1016/j.colsurfa.2009.02.007

    22. [22]

      (22) Tan, X.; Chen, C.; Yu, S.; Wang, X. Applied Geochemistry 2008,23, 2767. doi: 10.1016/j.apgeochem.2008.07.008

    23. [23]

      (23) Yang, S. T.; Sheng, G. D.; Guo, Z. Q.; Tan, X. L.; Xu, J. Z.;Wang, X. K. Sci. China Ser. B-Chem. 2012, 42, 844. [杨世通,盛国栋, 郭志强, 谭小丽, 徐进章, 王祥科. 中国科学: 化学,2012, 42, 844. ]

    24. [24]

      (24) Davis, J. A.; Meece, D. E.; Kohler, M.; Curtis, G. P. Geochimica et Cosmochimica Acta 2004, 68, 3621. doi: 10.1016/j.gca.2004.03.003

    25. [25]

      (25) Tertre, E.; Hofmann, A.; Berger, G. Geochimica et Cosmochimica Acta 2008, 72, 1043. doi: 10.1016/j.gca.2007.12.015

    26. [26]

      (26) Park, C. K.; Hahn, P. S. Korean Journal of Chemical Engineering 1999, 16, 758. doi: 10.1007/BF02698348

    27. [27]

      (27) Papelis, C. Advances in Environmental Research 2001, 5,151. doi: 10.1016/S1093-0191(00)00053-8


  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    9. [9]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

Metrics
  • PDF Downloads(574)
  • Abstract views(958)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return