Citation: SHANGGUAN Peng-Peng, TONG Shao-Ping, LI Hai-Li, LENG Wen-Hua. Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1954-1960. doi: 10.3866/PKU.WHXB201306261
-
It has been reported that applying a certain external anodic potential over un-doped (α-Fe2O3) and Ti-doped α-Fe2O3 (Ti-Fe2O3) electrodes can improve the photocurrent or the photoelectrochemical oxidation rate of water. However, it is assumed in the literature that the potential drops completely across the side of the solid semiconductor (band edge pinning), and the influence of the potential on the interfacial charge-transfer rate constant is rarely reported. In this article, the impact of the applied potential on the interfacial charge-transfer rate constant during photoelectrochemical oxidation of water over the two electrodes was investigated by electrochemical impedance spectroscopy. The results showed that by increasing the applied anodic potential, the interfacial charge-transfer rate constants for both electrodes were increased. The smaller increase in the magnitude of the rate constant than determined by theory indicates that not all of the applied potential drops across the Helmholtz layer, but takes place in both the space charge and Helmholtz layers simultaneously (Fermi level pinning). The results of the surface-state capacitance measurements suggested that the photo-generated charge can be accumulated in the surface states, resulting in the re-distribution of the potential at the interface and an improvement in the rate constant. Under the same applied potential, the higher the light intensity is, the more the photogenerated holes accumulated in the surface states. This causes an increase in the potential drop across the Helmholtz layer and consequently increases the charge-transfer rate constant. Compared with the α-Fe2O3, the improvement of the charge-transfer rate constant by the anodic potential is more obvious.
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Esswein, M. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022. doi: 10.1021/cr050193e
-
[3]
(3) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.;Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.doi: 10.1021/cr1002326
-
[4]
(4) Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414,625. doi: 10.1038/414625a
-
[5]
(5) Abe, R.; Higashi, M.; Domen, K. J. Am. Chem. Soc. 2010, 132,11828. doi: 10.1021/ja1016552
-
[6]
(6) Jin, T.; Xu, D.; Diao, P.; Xiang, M. Acta Phys. -Chim. Sin. 2012,28, 2276. [金涛,许頔,刁鹏,项民.物理化学学报,2012, 28, 2276.] doi: 10.3866/PKU.WHXB201209101
-
[7]
(7) Du, W. P.; Li, Z.; Leng, W. H.; Xu, Y. M. Acta Phys. -Chim. Sin.2009, 25, 1530. [杜卫平,李臻,冷文华, 许宜铭.物理化学学报, 2009, 25, 1530.] doi: 10.3866/PKU.WHXB20090736
-
[8]
(8) Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Savvides, N.J. Phys. Chem. C 2007, 111, 16477. doi: 10.1021/jp074556l
-
[9]
(9) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128,15714. doi: 10.1021/ja064380l
-
[10]
(10) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Bisquert, J.;Hamann, T. W. J. Am. Chem. Soc. 2012, 134, 16693. doi: 10.1021/ja306427f
-
[11]
(11) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug,D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v
-
[12]
(12) Hamann, T. W. Dalton Trans. 2012, 41, 7830. doi: 10.1039/c2dt30340j
-
[13]
(13) Wang, G.; Ling, Y.;Wheeler, D. A.; George, K. E. N.; Horsley,K.; Heske, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3503.doi: 10.1021/nl202316j
-
[14]
(14) Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G.D.; McFarland, E. W. J. Phys. Chem. C 2008, 112, 15900. doi: 10.1021/jp803775j
-
[15]
(15) Liu, Y.; Yu, Y. X.; Zhang, W. D. Electrochim. Acta 2012, 59,121. doi: 10.1016/j.electacta.2011.10.051
-
[16]
(16) Hu, Y. S.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland,E. W. Chem. Commun. 2009, 2652.
-
[17]
(17) Le Formal, F.; Tetreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.;Sivula, K. Chem. Sci. 2011, 2, 737. doi: 10.1039/c0sc00578a
-
[18]
(18) Zhang, M.; Luo, W.; Zhang, N.; Li, Z.; Yu, T.; Zou, Z.Electrochem. Commun. 2012, 23, 41. doi: 10.1016/j.elecom.2012.06.040
-
[19]
(19) Kim, J. Y.; Jang, J. W.; Youn, D. H.; Kim, J. Y.; Kim, E. S.; Lee,J. S. RSC Adv. 2012, 2, 9415. doi: 10.1039/c2ra21169f
-
[20]
(20) Upul-Wijayantha, K. G.; Saremi-Yarahmadi, S.; Peter, L. M.Phys. Chem. Chem. Phys. 2011, 13, 5264. doi: 10.1039/c0cp02408b
-
[21]
(21) Leng, W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C. N. J. Phys. Chem. B 2005, 109, 15008. doi: 10.1021/jp051821z
-
[22]
(22) Cheng, X. F.; Leng, W. H.; Liu, D. P.; Xu, Y. M.; Zhang, J. Q.;Cao, C. N. J. Phys. Chem. C 2008, 112, 8725. doi: 10.1021/jp7097476
-
[23]
(23) Oskam, G.; Schmidt, J. C.; Hoffmann, P. M.; Searson, P. C.J. Electrochem. Soc. 1996, 143, 2531. doi: 10.1149/1.1837043
-
[24]
(24) Oskam, G.; Hoffmann, P. M.; Searson, P. C. Phys. Rev. Lett.1996, 76, 1521. doi: 10.1103/PhysRevLett.76.1521
-
[25]
(25) Li, W.; Leng, W. H.; Niu, Z. J.; Li, X.; Fei, H.; Zhang, J. Q.;Cao, C. N. Acta Phys. -Chim. Sin. 2009, 25, 2427. [李文,冷文华,牛振江, 李想, 费会, 张鉴清,曹楚南. 物理化学学报, 2009, 25, 2427.] doi: 10.3866/PKU.WHXB20091210
-
[26]
(26) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.;Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h
-
[27]
(27) Leng, W. H.; Zhang, Z.; Cheng, S. A.; Zhang, J. Q.; Cao, C. N.Chin. Chem. Lett. 2001, 12, 1019.
-
[28]
(28) Shangguan, P.; Tong, S.; Li, H.; Leng, W. RSC Advances 2013,3, 10163. doi: 10.1039/c3ra41439f
-
[1]
-
-
[1]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[2]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[3]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[4]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[5]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[6]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[7]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[8]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[9]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[10]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[11]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[12]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[13]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[14]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[15]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[16]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[17]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[18]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[19]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[20]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[1]
Metrics
- PDF Downloads(680)
- Abstract views(714)
- HTML views(6)