Citation: DU Shu-Qing, YUAN Yu-Feng, TU Wei-Xia. Microwave-Hydrothermal Synthesis and Photocatalytic Activity of Zn2GeO4 Nanoribbons[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 2062-2068. doi: 10.3866/PKU.WHXB201306213
-
Zn2GeO4 nanoribbons were synthesized via a microwave-hydrothermal method. The effects of reaction factors, such as reaction temperature, amount of reactants and template, were investigated and optimized for the formation of Zn2GeO4 nanoribbons. The products were characterized by various techniques including field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). Photocatalytic activities of the synthesized Zn2GeO4 nanostructures were evaluated for the degradation of aqueous methyl orange. Experimental results indicated that Zn2GeO4 nanoribbons can be synthesized from Zn(CH3COO)2 and GeO2 (molar ratio 2: 1) under microwave irradiation at 160℃ for 20 min. The nanoribbons have uniformsizes with widths of 100 nm and are tens of micrometers in length. Compared with conventional hydrothermal methods, Zn2GeO4 nanoribbons from microwave-hydrothermal synthesis have less native defects, lower PL spectra, 50.7% larger specific surface area, and 54.7% higher photocatalytic activity.
-
-
[1]
(1) Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.;Ye, J. Adv. Mater. 2012, 24 (2), 229. doi: 10.1002/adma.201102752
-
[2]
(2) Chen, C. C.; Ma, W. H.; Zhao, J. C. Chem. Soc. Rev. 2010, 39 (11), 4206. doi: 10.1039/b921692h
-
[3]
(3) Fujishima, A.; Zhang, X. T.; Tryk, D. A. Surf. Sci. Rep. 2008, 63 (12), 515. doi: 10.1016/j.surfrep.2008.10.001
-
[4]
(4) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y. J. Catal. 2009, 266 (2), 165. doi: 10.1016/j.jcat.2009.06.024
-
[5]
(5) Ying, H.; Wang, Z. Y.; Guo, Z. D.; Shi, Z. J.; Yang, S. F. Acta Phys. -Chim. Sin. 2011, 27 (6), 1482. [应红, 王志永,郭政铎,施祖进, 杨上峰.物理化学学报, 2011, 27 (6), 1482.] doi: 10.3866/PKU.WHXB20110630
-
[6]
(6) Stevens, R.; Woodfield, B. F.; Boerio- ates, J.; Crawford, M.K. J. Chem. Thermodyn. 2004, 36 (5), 349. doi: 10.1016/j.jct.2003.12.010
-
[7]
(7) Pei, L. Z.; Yang, Y.; Yang, L. J.; Fan, G. G.; Yuan, C. Z.; Zhang,Q. F. Solid State Commun. 2011, 151 (14-15), 1036. doi: 10.1016/j.ssc.2011.04.017
-
[8]
(8) Liu, Z. S.; Jing, X. P.; Wang, L. X. J. Electrochem. Soc. 2007,154 (6), H500. doi: 10.1149/1.2720769
-
[9]
(9) Takeshita, S.; Honda, J.; Isobe, T.; Sawayama, T.; Niikura, S. Cryst. Growth Des. 2010, 10 (10), 4494. doi: 10.1021/cg100753g
-
[10]
(10) Yoon, K. H.; Kim, J. H. Thin Solid Films 2010, 519 (5), 1583.doi: 10.1016/j.tsf.2010.08.157
-
[11]
(11) Yan, C. Y.; Singh, N. D.; Lee, P. S. Appl. Phys. Lett. 2010, 96 (5), 053108. doi: 10.1063/1.3297905
-
[12]
(12) Ma, B. J.; Wen, F. Y.; Jiang, H. F.; Yang, J. H.; Ying, P. L.; Li, C. Catal. Lett. 2010, 134 (1-2), 78. doi: 10.1007/s10562-009-0220-8
-
[13]
(13) Yan, S. C.; Wan, L. J.; Li, Z. S.; Zou, Z. G. Chem. Commun.2011, 47 (19), 5632. doi: 10.1039/c1cc10513b
-
[14]
(14) Huang, J. H.; Ding, K. N.; Hou, Y. D.; Wang, X. C.; Fu, X. C.ChemSusChem 2008, 1 (12), 1011. doi: 10.1002/cssc.200800166
-
[15]
(15) Chi, J. H.; Wang, J. Acta Phys. -Chim. Sin. 2010, 26 (8), 2306.[池俊红,王娟.物理化学学报, 2010, 26 (8), 2306.] doi: 10.3866/PKU.WHXB20100820
-
[16]
(16) Li, X. N.; Bai, S. L.; Yang, W. S. Acta Phys. -Chim. Sin. 2012, 28 (7), 1797. [李晓宁, 白守礼, 杨文胜.物理化学学报, 2012, 28 (7), 1797.] doi: 10.3866/PKU.WHXB201205081
-
[17]
(17) Yan, C. Y.; Lee, P. S. J. Phys. Chem. C 2009, 114 (1), 265. doi: 10.1021/jp909068v
-
[18]
(18) Yan, C. Y.; Lee, P. S. J. Phys. Chem. C 2009, 113 (32), 14135.doi: 10.1021/jp9050879
-
[19]
(19) Tsai, M. Y.; Yu, C. Y.; Wang, C. C.; Perng, T. Y. J. Cryst. Growth Des. 2008, 8 (7), 2264. doi: 10.1021/cg700924j
-
[20]
(20) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.;Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132 (41), 14385.doi: 10.1021/ja1068596
-
[21]
(21) Yu, L.; Zou, R. J.; Zhang, Z. Y.; Song, G. S.; Chen, Z. G.; Yang,J. M.; Hu, J. Q. Chem. Commun. 2011, 47 (38), 10719. doi: 10.1039/c1cc14159g
-
[22]
(22) Mao, X. L.; Xu, D. X.; Fu, M. I.; Yuan, B. L.; Shi, J. W.; Cui, H.J. J. Chem. Eng. 2013, 218, 73. doi: 10.1016/j.cej.2012.12.031
-
[23]
(23) Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6 (3), 128. doi: 10.1039/b310502d
-
[24]
(24) Zhang, L.; Cao, X. F.; Ma, Y. L.; Chen, X. T.; Xue, Z. L.CrystEngComm 2010, 12 (10), 3201. doi: 10.1039/b927170h
-
[25]
(25) Du, J.; Li, X. L.; Wang, S. J.; Wu, Y. Z.; Hao, X. P.; Xu, C. W.;Zhao, X. J. Mater. Chem. 2012, 22 (22), 11390. doi: 10.1039/c2jm30882g
-
[26]
(26) Mou, Q. Y.; Li, X. J. Physics 2004, 33 (6), 438. [牟群英, 李贤军. 物理, 2004, 33 (6), 438.] doi: 0379-4148.0.2004.06.013
-
[27]
(27) Xiao, H. J.; Xu, Y. X.; Ning, Q. J. J. Shaanxi Univ. Sci. Tech. (Nat. Sci. Ed.) 2009, 27 (4), 164. [肖昊江,徐依玺,宁青菊.陕西科技大学学报(自然科学版), 2009, 27 (4), 164.]
-
[28]
(28) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. CrystEngComm2011, 13, 2464. doi: 10.1039/c0ce00872a
-
[29]
(29) Boppana, V. B. R.; Hould, N. D.; Lobo, R. F. J. Solid State Chem. 2011, 184 (5), 1054. doi: 10.1016/j.jssc.2011.02.022
-
[30]
(30) Daharma, J.; Pisal, A. Simple Method of Measuring the BandGap Energy Value of TiO2 in the Powder Formusing a UV/Vis/NIR Spectrometer. http://www.doc88.com/p-585323605130.html (accessed Jun 18, 2013).
-
[31]
(31) Liu, Z. Q.; Zhou, Y. P.; Ge, C. C. Rare. Metal. Mat. Eng. 2006,35 (Suppl. 2), 104. [刘中清, 周艳平,葛昌纯. 稀有金属材料与工程, 2006, 35 (Suppl. 2), 104.] doi: 1002-185x.0.2006-S2-026
-
[1]
-
-
[1]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[2]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[3]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[4]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[7]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[8]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[9]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[10]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[11]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[12]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[13]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[16]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[18]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[19]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[20]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[1]
Metrics
- PDF Downloads(1512)
- Abstract views(901)
- HTML views(52)