Citation: WEI Yu-Long, BAO Chun-Xiong, GAO Hao, HUANG Huan, YU Tao, ZOU Zhi-Gang. Increasing Specific Surface Area of (110)-Oriented ZnO Nanosheets by Sulfuration-Oxidization Treatment for Photoelectrode Applications[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1975-1980. doi: 10.3866/PKU.WHXB201306212
-
To increase the specific surface area of ZnOnanosheets, a sulfuration and oxidization treatment was introduced. First, ZnO nanosheets were grown by the hydrothermal method at a low temperature on the conductive side of the fluorine-doped tin oxide (FTO) conductive glass. The same method was then used to obtain ZnS nanosheets by dipping the FTO with ZnO nanosheets into the precursor of the thioacetamide aqueous solution. In the end, ZnO nanosheets were gained again by sintering ZnS nanosheets at a high temperature in an air atmosphere. The effects of the treatment on ZnO nanosheets were studied with respect to morphology, structure, specific surface area, and pore size distributions. The results showed that the specific surface area of ZnO nanosheets can be doubled after the sulfuration and oxidization treatment. The samples were also introduced into the photoelectrode of dye-sensitized solar cells (DSSCs) and their dye-loading, current density-voltage (J-V), and the monochromatic incident photon-to-electron conversion efficiency (IPCE) were characterized and compared. The results showed that both the dye-loading and IPCE were increased via the sulfuration and oxidization treatment. Above all, the energy conversion efficiency of DSSCs was found to increase by 33%.
-
-
[1]
(1) O'Regan, B. C.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Grätzel, M. J. Photochem. Photobiol. A-Chem. 2004, 164,3. doi: 10.1016/j.jphotochem.2004.02.023
-
[3]
(3) Edward, J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Webber, J. A.A.; Snaith, H. J. Nature 2013, 495, 215. doi: 10.1038/nature11936
-
[4]
(4) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[5]
(5) Chen, J.; Li, C.; Xu, F.; Zhou, Y. D.; Lei, W.; Sun, L. T.; Zhang,Y. RSC Adv. 2012, 2, 7384. doi: 10.1039/c2ra20909h
-
[6]
(6) Bjoerksten, U.; Moser, J.; Grätzel, M. Chem. Mater. 1994, 6,858. doi: 10.1021/cm00042a026
-
[7]
(7) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. J. Am. Chem. Soc. 2001, 123, 10639. doi: 10.1021/ja011315x
-
[8]
(8) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Baker, R. H.; Mueller,E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc.1993, 115, 6382. doi: 10.1021/ja00067a063
-
[9]
(9) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S.M.; Baker, R. H.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.;Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.;Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
-
[10]
(10) An, H. L.; Xue, B. F.; Li, D. M.; Li, H.; Meng, Q. B.; Guo, L.;Chen, L. Q. Electrochem. Commun. 2006, 8, 170. doi: 10.1016/j.elecom.2005.11.012
-
[11]
(11) Wu, J. H.; Li, P. J.; Hao, S. C.; Yang, H. X.; Lan, Z. Electrochim. Acta 2007, 52, 5334. doi: 10.1016/j.electacta.2006.12.067
-
[12]
(12) Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S. Sol. Energy Mater. Sol. Cells 2008, 92, 814. doi: 10.1016/j.solmat.2007.12.012
-
[13]
(13) Chu, L. L.; Gao, Y. R.; Wu, M. X.; Wang, L. L.; Ma, T. L. Acta Phys. -Chim. Sin. 2012, 28, 1739. [储玲玲,高玉荣, 武明星,王琳琳, 马廷丽. 物理化学学报, 2012, 28, 1739.] doi: 10.3866/PKU.WHXB201204232
-
[14]
(14) Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2011, 27, 2255. [李靖,孙明轩,张晓艳,崔晓莉. 物理化学学报, 2011, 27, 2255.] doi: 10.3866/PKU.WHXB20110901
-
[15]
(15) Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater. 2009, 21, 4087. doi: 10.1002/adma.v21:41
-
[16]
(16) Guan, J.; Wang, X. Y.; Tian, Z. P.; Zhang, J. Y.; Yu, T.; Yu, Z. T.;Zou, Z. G. Chin. J. Inorg. Chem. 2009, 25, 2036. [管杰, 王湘艳, 田志鹏,张继远,于涛,于振涛,邹志刚.无机化学学报, 2009, 25, 2036.]
-
[17]
(17) Qurashi, A.; Hossain, M. F.; Faiz, M.; Tabet, N.; Alam, M. W.;Reddy, N. K. J. Alloy. Compd. 2010, 503, L40.
-
[18]
(18) Huang, Q. L.; Fang, L.; Chen, X.; Saleem, M. J. Alloy. Compd.2011, 509, 9456. doi: 10.1016/j.jallcom.2011.07.029
-
[19]
(19) Wu, J. J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213109. doi: 10.1063/1.2742639
-
[20]
(20) Wang, X. D.; Zhou, J.; Lao, C. S.; Song, J. H.; Xu, N. S.; Wang,Z. L. Adv. Mater. 2007, 19, 1627.
-
[21]
(21) Kao, M. C.; Chen, H. Z.; Young, S. L.; Lin, C. C.; Kung, C. Y.Nanoscale Res. Lett. 2012, 7, 260. doi: 10.1186/1556-276X-7-260
-
[22]
(22) Xi, Y.; Wu, W. Z.; Fang, H.; Hu, C. G. J. Alloy. Compd. 2012,529, 163. doi: 10.1016/j.jallcom.2012.02.183
-
[23]
(23) Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.;Wang, Z. L. Nanotechnology 2010, 21, 405203. doi: 10.1088/0957-4484/21/40/405203
-
[24]
(24) Ranjusha, R.; Lekha, P.; Subramanian, K. R. V.; Shantikumar, V.N.; Balakrishnan, A. J. Mater. Sci. Technol. 2011, 27, 961. doi: 10.1016/S1005-0302(11)60170-9
-
[25]
(25) Wang, X. Y.; Tian, Z. P.; Yu, T.; Tian, H. M.; Zhang, J. Y.; Yuan,S. K.; Zhang, X. B.; Li, Z. S.; Zou, Z. G. Nanotechnology 2010,21, 065703. doi: 10.1088/0957-4484/21/6/065703
-
[26]
(26) Lin, C. Y.; Lai, Y. H.; Chen, H. W.; Chen, J. G.; Kung, C. W.;Vittal, R.; Ho, K. U. Energy Environ. Sci. 2011, 4, 3448. doi: 10.1039/c0ee00587h
-
[27]
(27) Qiu, J. H.; Guo, M.; Wang, X. D. ACS Appl. Mater. Interfaces2011, 3, 2358. doi: 10.1021/am2002789
-
[28]
(28) McCune, M.; Zhang, W.; Deng, Y. L. Nano Lett. 2012, 12,3656. doi: 10.1021/nl301407b
-
[29]
(29) Qiu, J. H.; Guo, M.; Feng, Y. J.; Wang, X. D. Electrochim. Acta2011, 56, 5776. doi: 10.1016/j.electacta.2011.04.059
-
[30]
(30) Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X.Appl. Phys. Lett. 2007, 90, 263501.
-
[31]
(31) Ju, X. H.; Feng, W.; Varutt, K. C.; Hori, T. S.; Fujii, A. H.;Ozaki, M. N. Nanotechnology 2008, 19, 435706. doi: 10.1088/0957-4484/19/43/435706
-
[32]
(32) Fujimura, N.; Nishihara, T.; to, S.; Xu, J. F.; Ito, T. J. Cryst. Growth 1993, 130, 269. doi: 10.1016/0022-0248(93)90861-P
-
[33]
(33) Zhang, X. T.; Liu, Y. C.; Zhi, Z. Z.; Zhang, J. Y.; Lu, Y. M.; Xu,W.; Shen, D. Z.; Zhong, G. Z.; Fan, X. W.; Kong, X. G. J. Cryst. Growth 2002, 240, 463. doi: 10.1016/S0022-0248(02)00924-7
-
[34]
(34) Groen, J. C.; Peffer, L. A. A.; Ramirez, J. P. Microporous Mesoporous Mat. 2003, 60, 1. doi: 10.1016/S1387-1811(03)00339-1
-
[35]
(35) Dawood, F.; Schaak, R. E. J. Am. Chem. Soc. 2009, 131,424. doi: 10.1021/ja808455u
-
[36]
(36) Wang, S. M.; Xia, G. D.; Shao, J. D.; Fan, Z. X. J. Alloy. Compd. 2006, 424, 304. doi: 10.1016/j.jallcom.2005.12.022
-
[37]
(37) Jiu, J.; Isoda, S.; Wang, F. M.; Adachi, M. J. Phys. Chem. B2006, 110, 2089. doi: 10.1021/jp054038f
-
[38]
(38) Hwang, K. J.; Shim, W. G.; Jung, S. H.; Yoo, S. J.; Lee, J. W.Appl. Surf. Sci. 2010, 256, 5428. doi: 10.1016/j.apsusc.2009.12.128
-
[1]
-
-
[1]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[2]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[4]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[5]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[6]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[9]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[10]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[11]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[12]
Yongqing Kuang , Jie Liu , Jianjun Feng , Wen Yang , Shuanglian Cai , Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012
-
[13]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[14]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[15]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[16]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[17]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[18]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[19]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[20]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[1]
Metrics
- PDF Downloads(668)
- Abstract views(712)
- HTML views(10)