Citation: HAO Ai-Xiang, YU Yang, CHEN Hai-Bo, MAO Chun-Peng, WEI Shi-Xin, YIN Yu-Sheng. Effect of Surface Promoters-Modifying on Catalytic Performance of Cu/ZnO/Al2O3 Methanol Synthesis Catalyst[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 2047-2055. doi: 10.3866/PKU.WHXB201306211 shu

Effect of Surface Promoters-Modifying on Catalytic Performance of Cu/ZnO/Al2O3 Methanol Synthesis Catalyst

  • Received Date: 8 April 2013
    Available Online: 21 June 2013

    Fund Project: 中国石油化工股份有限公司-煤基合成气专用合成甲醇催化剂放大研究项目(HX-KA12F001202)资助 (HX-KA12F001202)

  • Surface promoters-modified Cu/ZnO/Al2O3 (CZA) catalysts were prepared by a coprecipitationpost impregnation method and evaluated in methanol synthesis fromsyngas. The effects of Zr, Ba, and Mn as promoters, the reaction temperature and run time over CZA and Zr-promoted CZA catalysts on catalytic performance were investigated, respectively. The catalysts were characterized by X-ray diffraction (XRD), N2-sorption, reactive N2O sorption, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of H2 (H2-TPD), scanning electron microscopy (SEM), and high-resolution transmittance electron microscopy (HR-TEM). The results showed that the space-time yield (STY) of methanol can be increased noticeably over the Zr-or Ba-promoted CZA catalyst before and after the heating treatment of the catalysts. The introduction of Mn as a promoter onto the CZA catalyst led to a decrease in the STY of methanol before heating treatment. The introduction of Zr as a promoter onto the CZA catalyst can decrease the temperature at which the STY of methanol reached the highest value and also improve the catalytic stability. A hydrogen molecule can be adsorbed and then activated over Cu0 and ZnO. The strong interaction between Cu0 and ZnO is favorable for improving the catalytic performance of the CZA catalyst. The decrease in catalytic performance after heating treatment of the CZA catalysts is attributed to a growth of Cu0 crystallites. Based on the results of catalytic performance and characterization, a possible "bidirectional but synchronous catalytic reaction course" in methanol synthesis from syngas over a CZA catalyst is proposed.

  • 加载中
    1. [1]

      (1) Liu, L.; Zhao, T. S.; Ma, Q. X.; Shen, Y. F. J. Natural Gas Chem. 2009, 18, 375. doi: 10.1016/S1003-9953(08)60121-8

    2. [2]

      (2) Koeppel, R. A.; Baiker, A.; Wokaun, A. Appl. Catal. A-Gen.1992, 84, 77. doi: 10.1016/0926-860X(92)80340-I

    3. [3]

      (3) tti, A.; Prins, R. J. Catal. 1998, 178, 511. doi: 10.1006/jcat.1998.2167

    4. [4]

      (4) Ma, L.; Wainwright, M. S. Appl. Catal. A-Gen. 1999, 187,89. doi: 10.1016/S0926-860X(99)00200-8

    5. [5]

      (5) Ovesen, C. V.; Clausen, B. S.; Schotz, J.; Stoltze, P.; Topsoe, H.;Norskov, J. K. J. Catal. 1997, 168, 133. doi: 10.1006/jcat.1997.1629

    6. [6]

      (6) Lee, D.; Jung, G. S.; Lee, H. C.; Lee, J. S. Catal. Today 2006,111, 373. doi: 10.1016/j.cattod.2005.10.062

    7. [7]

      (7) Ma, Y. C.; Ge, Q. J.; Li, W. Z.; Xu, H. Y. Appl. Catal. BEnviron.2009, 90, 99 doi: 10.1016/j.apcatb.2009.02.020

    8. [8]

      (8) Shen, W. J.; Ichihashi, Y. C.; Ando, H.; Okumura, M.; Haruta,M.; Matsumura, Y. Appl. Catal. A-Gen. 2001, 217, 165. doi: 10.1016/S0926-860X(01)00606-8

    9. [9]

      (9) Hong, C. Q.; Qiu, D.; Cao, J. P.; Zhang, Z. D.; Fu, Y. C. J. Fuel Chem. Technol. 2001, 29, 355. [洪传庆,仇冬,曹建平,张祖硕,傅玉川.燃料化学学报, 2001, 29, 355.]

    10. [10]

      (10) Spencer, M. S. Catal. Lett. 1998, 50, 37. doi: 10.1023/A:1019098414820

    11. [11]

      (11) Wang, L. L.; Yang, L. M.; Zhang, Y. H.; Ding, W.; Chen, S. P.;Fang,W. P.; Yang, Y. Q. Fuel Process. Technol. 2010, 91, 723.doi: 10.1016/j.fuproc.2010.02.003

    12. [12]

      (12) Liu, X. M. Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s

    13. [13]

      (13) Jensen, J. R.; Johannessen, T.; Wedel, S.; Livbjerg, H. J. Catal.2003, 218, 67. doi: 10.1016/S0021-9517(03)00047-2

    14. [14]

      (14) Hu, Z. H.; Chen, S. Y.; Peng, S. Y. J. Colloid Interface Sci.1996, 182, 461. doi: 10.1006/jcis.1996.0488

    15. [15]

      (15) Hu, Z. H.; Chen, S. Y.; Peng, S. Y. J. Colloid Interface Sci.1996, 182, 457. doi: 10.1006/jcis.1996.0487

    16. [16]

      (16) Xu, H. Y.; Chu, W.; Ci, Z. M. Acta Phys. -Chim. Sin. 2007, 23,1042. [徐慧远,储伟,慈志敏.物理化学学报, 2007, 23,1042.] doi: 10.3866/PKU.WHXB20070715

    17. [17]

      (17) Qiu, D.; Chen, H. B.; Huang, J. Q.; Cao, J. P.; Yin, H. Q. AMicrowave Treatment Method toward Cu-based MethanolSynthesis Catalysts. CN Patent 101450311A, 2009-06-10.[仇冬,陈海波,黄金钱, 曹建平, 殷惠琴. 一种提高铜基催化剂性能的微波处理方法: 中国, CN101450311A[P]. 2009-06-10.]

    18. [18]

      (18) Meshkini, F.; Taghizadeh, M.; Bahmani, M. Fuel 2010, 89,170. doi: 10.1016/j.fuel.2009.07.007

    19. [19]

      (19) Samei, E.; Taghizadeh, M.; Bahmani, M. Fuel Process. Technol.2012, 96, 128. doi: 10.1016/j.fuproc.2011.12.028

    20. [20]

      (20) Xu, Y.; Xia, H. T.; Liu, Z. Q. Design and Preparation Technology of Catalyst; Chemical Industry Press: Beijing, 2003;pp 197-200. [许越,夏海涛,刘振琦. 催化剂设计与制备工艺.北京: 化学工业出版社, 2003: 197-200.]

    21. [21]

      (21) Yu, Y.; Guo, Y. L.; Zhan, W. C.; Guo, Y.; Wang, Y. Q.; Wang, Y.S.; Zhang, Z. G.; Lu, G. Z. J. Mol. Catal. A-Chem. 2011, 337,77. doi: 10.1016/j.molcata.2011.01.019

    22. [22]

      (22) Chu, Z.; Chen, H. B.; Yu, Y.; Wang, Q.; Fang, D. Y. J. Mol. Catal. A-Chem. 2013, 366, 48. doi: 10.1016/j.molcata.2012.09.007

    23. [23]

      (23) Wang, D. J.; Tao, F. R.; Zhao, H. H.; Song, H. J.; Chou, L. J.Chin. J. Catal. 2011, 32, 1452. [王丹君,陶芙蓉, 赵华华,宋焕玲, 丑凌军.催化学报, 2011, 32, 1452.] doi: 10.1016/S1872-2067(10)60256-2

    24. [24]

      (24) Shan, H. B.; Zhang, Z. T. J. Eur. Ceram. Soc. 1997, 17,713. doi: 10.1016/S0955-2219(96)00087-8

    25. [25]

      (25) Robinson, W. R. A. M.; Mol, J. C. Appl. Catal. 1990, 63,165. doi: 10.1016/S0166-9834(00)81713-3

    26. [26]

      (26) Behrens, M.; Studt, F.; Kasatkin, L.; Kühl, S.; Hävecker, M.;Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.L.; Tovar, M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R.Science 2012, 336, 893. doi: 10.1126/science.1219831

    27. [27]

      (27) Matsumura, Y.; Ishibe, H. J. Catal. 2009, 268, 282. doi: 10.1016/j.jcat.2009.09.026

    28. [28]

      (28) Karelovic, A.; Bargibant, A.; Fernández, C.; Ruiz, P. Catal. Today 2012, 197, 109. doi: 10.1016/j.cattod.2012.07.029

    29. [29]

      (29) Sloczyński, J.; Grabowski, R.; Kozlowska, A.; Olszewski, P.;Lachowska, M.; Skrzypek, J.; Stoch, J. Appl. Catal. A-Gen.2003, 249, 129. doi: 10.1016/S0926-860X(03)00191-1

    30. [30]

      (30) Zhou, G. D.; Duan, L. Y. Basal Structural Chemistry, 3rd ed.;Beijing University Press: Beijing, 2002: pp 87-90. [周公度,段连运. 结构化学基础. 第三版. 北京: 北京大学出版社, 2002:87-90.]

    31. [31]

      (31) Li, Z.; Yan, S. W.; Fan, H. Fuel 2013, 106, 178. doi: 10.1016/j.fuel.2012.11.003

    32. [32]

      (32) Li, Z.; Zheng, H.; Xie, K. C. Chin. J. Catal. 2008, 29, 431.[李忠,郑华艳,谢克昌. 催化学报, 2008, 29, 431.]

    33. [33]

      (33) Zhang, L. X.; Zhang, Y. C.; Chen, S. Y. Appl. Catal. A-Gen.2012, 415-416, 118.

    34. [34]

      (34) Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.;Spadaro, L.; Frusteri, F. Appl. Catal. A-Gen. 2008, 350, 16. doi: 10.1016/j.apcata.2008.07.028

    35. [35]

      (35) Wang, S.; Mao, D. S.; Guo, X. M.; Lu, G. Z. Acta Phys. -Chim. Sin. 2011, 27, 2651. [王嵩,毛东森, 郭晓明,卢冠忠. 物理化学学报, 2011, 27, 2651.] doi: 10.3866/PKU.WHXB20111018

    36. [36]

      (36) Herman, R. G.; Klier, K.; Simmons, G. W.; Finn, B. P.; Bulko, J.B. J. Catal. 1979, 56, 407.

    37. [37]

      (37) Pirim, C.; Krim, L. Chem. Phys. 2011, 380, 67. doi: 10.1016/j.chemphys.2010.12.008

    38. [38]

      (38) Zhen, K. J.; Wang, G. J.; Bi, Y. L.; Li, R. S.; Kan, Q. B.Catalysis Foundation, 3rd ed.; Science Press: Beijing, 2004; pp20-22. [甄开吉,王国甲, 毕颖丽,李荣生, 阚秋斌.催化作用基础.第三版.北京:科学出版社, 2004: 20-22.]


  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(853)
  • Abstract views(906)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return