Citation: ZHONG Yan-Jun, LI Jun-Tao, WU Zhen-Guo, ZHONG Ben-He, GUO Xiao-Dong, HUANG Ling, SUN Shi-Gang. Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1989-1997. doi: 10.3866/PKU.WHXB201306181
-
Na2MnPO4F/C composites were synthesized by wet ball milling and in situ pyrolytic carbon coating. Stearic acid, citric acid, poly(ethylene glycol) 6000, and β-cyclodextrin were used as carbon sources in the synthesis process. The structures, morphologies, and electrochemical performances of the as-synthesized Na2MnPO4F/C composites were further investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analysis, and galvanostatic chargedischarge tests. Distinct differences were observed in the morphologies and sizes of the Na2MnPO4F/C particles obtained from different carbon sources, and this significantly affected their electrochemical performances. It was found that the primary particle size of the Na2MnPO4F/C material is a key factor in the electrochemical performance. The sample synthesized using citric acid as the carbon source had a micro-nano structure, with the smallest primary particle size of 10-40 nm, and displayed the best electrochemical properties. It delivered an initial discharge capacity of 80 mAh·g-1 under a current density of 5 mA·g-1 in the voltage range of 1.5-4.8 V, and displayed od cycling performance.
-
Keywords:
-
Lithium ion battery
, - Cathode,
- Na2MnPO4F/C,
- Carbon source,
- Morphology
-
-
-
[1]
(1) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, G. R.; Peng, Z. D.; Du, K.Acta Phys. -Chim. Sin. 2012, 28, 1183. [曹雁冰, 段建国,姜锋,胡国荣,彭忠东,杜柯.物理化学学报, 2012, 28,1183.] doi: 10.3866/PKU.WHXB2012022210
-
[2]
(2) Guo, X. D.; Zhong, B. H.; Liu, H.; Wu, D. Q.; Tang, Y.; Tang,H. J. Electrochem. Soc. 2009, 156, A787.
-
[3]
(3) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27, 2347. [赵浩川,宋杨,郭孝东, 钟本和, 董静,刘恒. 物理化学学报, 2011, 27,2347.] doi: 10.3866/PKU.WHXB20110905
-
[4]
(4) Chol, D. W.; Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z. M.; Wang,W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.;Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799. doi: 10.1021/nl1007085
-
[5]
(5) Tang, Y.; Guo, X. D.; Nie, X.; Zhong, Y. J.; Zhong, B. H.; Liu,H.; Wen, J. J. The Chinese Journal of Nonferrous Metals 2011,196, 8706. [唐艳, 郭孝东,聂翔,钟艳君, 钟本和,刘恒, 文嘉杰. 中国有色金属学报, 2011, 196, 8706.]
-
[6]
(6) Guo, X. D.; Zhong, B. H.; Tang, Y.; Liu, H.;Wu, D. Q.; Yang,H. L. J. Chem. Eng. Chin. Univ. 2009, 23, 701. [郭孝东,钟本和, 唐艳, 刘恒, 吴德桥, 杨海兰.高校化学工程学报,2009, 23, 701.]
-
[7]
(7) Tang, Y.; Zhong, B. H.; Guo, X. D.; Liu, H.; Zhong, Y. J.; Nie,X.; Tang, H. Acta Phys. -Chim. Sin. 2011, 27, 869. [唐艳,钟本和, 郭孝东, 刘恒,钟艳君,聂翔,唐红.物理化学学报, 2011, 27, 869.] doi: 10.3866/PKU.WHXB20110416
-
[8]
(8) ng, Z. L.; Yang, Y. Energy Environ. Sci. 2011, 4, 3223. doi: 10.1039/c0ee00713g
-
[9]
(9) Khasanova, N. R.; Drozhzhin, O. A.; Storozhilova, D. A.;Delmas, C.; Antipov, E. V. Chem. Mater. 2012, 24, 4271. doi: 10.1021/cm302724a
-
[10]
(10) Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2003,50, A1394.
-
[11]
(11) Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. J. Power Sources 2010, 195, 5768. doi: 10.1016/j.jpowsour.2010.03.032
-
[12]
(12) Makimura, Y.; Cahill, L. S.; Iriyama, Y.; ward, G. R.; Nazar,L. F. Chem. Mater. 2008, 20, 4240. doi: 10.1021/cm702346n
-
[13]
(13) Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.;Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007
-
[14]
(14) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.;Carretero- nzalez, J.; Rojo,T. Energy Environ. Sci. 2012, 5,5884. doi: 10.1039/c2ee02781j
-
[15]
(15) Nagahama, M.; Hasegawa, N.; Okada, S. J. Electrochem. Soc.2010, 157,A748.
-
[16]
(16) Okada, S.; Ueno, M.; Uebou, Y.; Yamaki, J. J. Power Sources2005, 146, 565. doi: 10.1016/j.jpowsour.2005.03.149
-
[17]
(17) Yang, Y.; ng, Z. L.; Wu, X. B.; Zheng, J. M.; Lü, D. P. Chin. Sci. Bull. 2012, 57, 2570. [杨勇,龚正良, 吴晓彪,郑建明,吕东平.科学通报, 2012, 57, 2570.] doi: 10.1360/972011-2149
-
[18]
(18) Recham, N.; Chotard, J. N.; Dupont, L.; Djellab, K.; Armand,M.; Tarascon, J. M. J. Electrochem. Soc. 2009, 145, A993.
-
[19]
(19) Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.;Ryan, D. H.; Nazar, L. F. Chem. Mater. 2010, 22, 1059. doi: 10.1021/cm902023h
-
[20]
(20) Kim, S. W.; Seo, D. H.; Kim, H.; Park. K. Y.; Kang, K. Phys. Chem. Chem. Phys. 2012, 14, 3299. doi: 10.1039/c2cp40082k
-
[21]
(21) Yakibovich, O. V.; Karimova, O. V.; Mel’nikov, O. K. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1997, C53, 395.
-
[22]
(22) Wu, X. B.; Zheng, J. M.; ng, Z. L.; Yang, Y. J. Mater. Chem.2011, 21, 18630. doi: 10.1039/c1jm13578c
-
[23]
(23) Slater, M. D.; Kim, D.; Lee, E. Adv. Funct. Mater. 2013, 23,947. doi: 10.1002/adfm.v23.8
-
[24]
(24) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Edit. 2008, 47, 2930.
-
[25]
(25) Wang, J. J.; Sun, X. L. Energy Environ. Sci. 2012, 5, 5163. doi: 10.1039/c1ee01263k
-
[26]
(26) Li, H. Q.; Zhou, H. S. Chem. Commun. 2012, 48, 1201. doi: 10.1039/c1cc14764a
-
[27]
(27) Zheng, J. M.; Xiao, J.; Xu, W.; Chen, X. L.; Gu, M.; Li, X. H.;Zhang, J. G. J. Power Sources 2013, 227, 211. doi: 10.1016/j.jpowsour.2012.11.038
-
[28]
(28) Seel, J. A.; Dahn, J. R. J. Electrochem. Soc. 2000, 147,892. doi: 10.1149/1.1393288
-
[29]
(29) Ishihara, T.; Koga, M.; Matsumoto, H.; Yoshio, M.Electrochem. Solid-State Lett. 2007, 10, A74.
-
[1]
-
-
[1]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[4]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[5]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[6]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[7]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[10]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[11]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[12]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[13]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[14]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[15]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[16]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[17]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[18]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[19]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[20]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[1]
Metrics
- PDF Downloads(1029)
- Abstract views(5130)
- HTML views(5)