Citation: ZHONG Yan-Jun, LI Jun-Tao, WU Zhen-Guo, ZHONG Ben-He, GUO Xiao-Dong, HUANG Ling, SUN Shi-Gang. Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1989-1997. doi: 10.3866/PKU.WHXB201306181 shu

Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery

  • Received Date: 19 March 2013
    Available Online: 18 June 2013

    Fund Project: 国家自然科学基金(50574063, 21021002, 21003102) (50574063, 21021002, 21003102) 四川大学青年科学家基金(2011SCU11081) (2011SCU11081)高等教育博士点科研基金(20120181120103)资助 (20120181120103)

  • Na2MnPO4F/C composites were synthesized by wet ball milling and in situ pyrolytic carbon coating. Stearic acid, citric acid, poly(ethylene glycol) 6000, and β-cyclodextrin were used as carbon sources in the synthesis process. The structures, morphologies, and electrochemical performances of the as-synthesized Na2MnPO4F/C composites were further investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analysis, and galvanostatic chargedischarge tests. Distinct differences were observed in the morphologies and sizes of the Na2MnPO4F/C particles obtained from different carbon sources, and this significantly affected their electrochemical performances. It was found that the primary particle size of the Na2MnPO4F/C material is a key factor in the electrochemical performance. The sample synthesized using citric acid as the carbon source had a micro-nano structure, with the smallest primary particle size of 10-40 nm, and displayed the best electrochemical properties. It delivered an initial discharge capacity of 80 mAh·g-1 under a current density of 5 mA·g-1 in the voltage range of 1.5-4.8 V, and displayed od cycling performance.

  • 加载中
    1. [1]

      (1) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, G. R.; Peng, Z. D.; Du, K.Acta Phys. -Chim. Sin. 2012, 28, 1183. [曹雁冰, 段建国,姜锋,胡国荣,彭忠东,杜柯.物理化学学报, 2012, 28,1183.] doi: 10.3866/PKU.WHXB2012022210

    2. [2]

      (2) Guo, X. D.; Zhong, B. H.; Liu, H.; Wu, D. Q.; Tang, Y.; Tang,H. J. Electrochem. Soc. 2009, 156, A787.

    3. [3]

      (3) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27, 2347. [赵浩川,宋杨,郭孝东, 钟本和, 董静,刘恒. 物理化学学报, 2011, 27,2347.] doi: 10.3866/PKU.WHXB20110905

    4. [4]

      (4) Chol, D. W.; Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z. M.; Wang,W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.;Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799. doi: 10.1021/nl1007085

    5. [5]

      (5) Tang, Y.; Guo, X. D.; Nie, X.; Zhong, Y. J.; Zhong, B. H.; Liu,H.; Wen, J. J. The Chinese Journal of Nonferrous Metals 2011,196, 8706. [唐艳, 郭孝东,聂翔,钟艳君, 钟本和,刘恒, 文嘉杰. 中国有色金属学报, 2011, 196, 8706.]

    6. [6]

      (6) Guo, X. D.; Zhong, B. H.; Tang, Y.; Liu, H.;Wu, D. Q.; Yang,H. L. J. Chem. Eng. Chin. Univ. 2009, 23, 701. [郭孝东,钟本和, 唐艳, 刘恒, 吴德桥, 杨海兰.高校化学工程学报,2009, 23, 701.]

    7. [7]

      (7) Tang, Y.; Zhong, B. H.; Guo, X. D.; Liu, H.; Zhong, Y. J.; Nie,X.; Tang, H. Acta Phys. -Chim. Sin. 2011, 27, 869. [唐艳,钟本和, 郭孝东, 刘恒,钟艳君,聂翔,唐红.物理化学学报, 2011, 27, 869.] doi: 10.3866/PKU.WHXB20110416

    8. [8]

      (8) ng, Z. L.; Yang, Y. Energy Environ. Sci. 2011, 4, 3223. doi: 10.1039/c0ee00713g

    9. [9]

      (9) Khasanova, N. R.; Drozhzhin, O. A.; Storozhilova, D. A.;Delmas, C.; Antipov, E. V. Chem. Mater. 2012, 24, 4271. doi: 10.1021/cm302724a

    10. [10]

      (10) Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2003,50, A1394.

    11. [11]

      (11) Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. J. Power Sources 2010, 195, 5768. doi: 10.1016/j.jpowsour.2010.03.032

    12. [12]

      (12) Makimura, Y.; Cahill, L. S.; Iriyama, Y.; ward, G. R.; Nazar,L. F. Chem. Mater. 2008, 20, 4240. doi: 10.1021/cm702346n

    13. [13]

      (13) Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.;Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007

    14. [14]

      (14) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.;Carretero- nzalez, J.; Rojo,T. Energy Environ. Sci. 2012, 5,5884. doi: 10.1039/c2ee02781j

    15. [15]

      (15) Nagahama, M.; Hasegawa, N.; Okada, S. J. Electrochem. Soc.2010, 157,A748.

    16. [16]

      (16) Okada, S.; Ueno, M.; Uebou, Y.; Yamaki, J. J. Power Sources2005, 146, 565. doi: 10.1016/j.jpowsour.2005.03.149

    17. [17]

      (17) Yang, Y.; ng, Z. L.; Wu, X. B.; Zheng, J. M.; Lü, D. P. Chin. Sci. Bull. 2012, 57, 2570. [杨勇,龚正良, 吴晓彪,郑建明,吕东平.科学通报, 2012, 57, 2570.] doi: 10.1360/972011-2149

    18. [18]

      (18) Recham, N.; Chotard, J. N.; Dupont, L.; Djellab, K.; Armand,M.; Tarascon, J. M. J. Electrochem. Soc. 2009, 145, A993.

    19. [19]

      (19) Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.;Ryan, D. H.; Nazar, L. F. Chem. Mater. 2010, 22, 1059. doi: 10.1021/cm902023h

    20. [20]

      (20) Kim, S. W.; Seo, D. H.; Kim, H.; Park. K. Y.; Kang, K. Phys. Chem. Chem. Phys. 2012, 14, 3299. doi: 10.1039/c2cp40082k

    21. [21]

      (21) Yakibovich, O. V.; Karimova, O. V.; Mel’nikov, O. K. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1997, C53, 395.

    22. [22]

      (22) Wu, X. B.; Zheng, J. M.; ng, Z. L.; Yang, Y. J. Mater. Chem.2011, 21, 18630. doi: 10.1039/c1jm13578c

    23. [23]

      (23) Slater, M. D.; Kim, D.; Lee, E. Adv. Funct. Mater. 2013, 23,947. doi: 10.1002/adfm.v23.8

    24. [24]

      (24) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Edit. 2008, 47, 2930.

    25. [25]

      (25) Wang, J. J.; Sun, X. L. Energy Environ. Sci. 2012, 5, 5163. doi: 10.1039/c1ee01263k

    26. [26]

      (26) Li, H. Q.; Zhou, H. S. Chem. Commun. 2012, 48, 1201. doi: 10.1039/c1cc14764a

    27. [27]

      (27) Zheng, J. M.; Xiao, J.; Xu, W.; Chen, X. L.; Gu, M.; Li, X. H.;Zhang, J. G. J. Power Sources 2013, 227, 211. doi: 10.1016/j.jpowsour.2012.11.038

    28. [28]

      (28) Seel, J. A.; Dahn, J. R. J. Electrochem. Soc. 2000, 147,892. doi: 10.1149/1.1393288

    29. [29]

      (29) Ishihara, T.; Koga, M.; Matsumoto, H.; Yoshio, M.Electrochem. Solid-State Lett. 2007, 10, A74.


  • 加载中
    1. [1]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(1029)
  • Abstract views(5300)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return