Citation: LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, HUANG Yang, CHEN Wang-Chao, DAI Song-Yuan. TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1851-1864. doi: 10.3866/PKU.WHXB201306172 shu

TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells

  • Received Date: 3 May 2013
    Available Online: 17 June 2013

    Fund Project: 国家重点基础研究发展规划项目(973)(2011CBA00700) (973)(2011CBA00700)国家自然科学基金(21003130, 61204075) (21003130, 61204075)中国科学院对外合作重点项目(GJHZ1220)资助 (GJHZ1220)

  • Dye-sensitized solar cell (DSC), a new type of solar cell, have attracted widespread attention since they were first reported. The internal contact interfaces of DSC, especially TiO2/dye/electrolyte interfaces, have always been a focus of research in this field. The adsorption of photosensitizers, and the injection, transport, and recombination of photoelectrons, which occur at the interface, have a significant effect on the DSC performance. Modification of the TiO2/dye/electrolyte interface of DSC can effectively reduce dye aggregation, surpress electronic recombination, enhance electronic injection efficiency, and improve the transport rate, so it improves the photovoltaic performance and stability of the DSC. Modification can also affect the position of TiO2 conduction band, the adsorption behavior of the dye, and other parameters. In this article, researches on the methods and mechanism of TiO2/dye/electrolyte interface modification are reviewed. These include modification of TiO2 photoanodes by various methods, the introduction of co-adsorbents into the dye bath, the co-sensitization by different dyes, and the use of electrolyte additives with different functional mechanisms in the electrolyte. Finally, problems existed in application of these modification methods and future development directions are discussed.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

    3. [3]

      (3) Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607

    4. [4]

      (4) Yu, Z. X.; Li, D. M.; Qin, D.; Sun, H. C.; Zhang, Y. D.; Luo, Y.H.; Meng, Q. B. Mater. China 2009, 28 , 8. [于哲勋,李冬梅,秦达, 孙惠成, 张一多, 罗艳红, 孟庆波.中国材料进展,2009, 28, 8.]

    5. [5]

      (5) ng, F.; Zhou, G.; Wang, Z. S. Chin. Sci. Bull. 2013, 58, 294.[宫峰,周刚,王忠胜.科学通报, 2013, 58, 294.] doi: 10.1360/972012-1327

    6. [6]

      (6) Lin, Y.; Wang, S. H.; Fu, N. Q.; Zhang, J. B.; Zhou, X. W.; Xiao,X. R. Prog. Chem. 2011, 23, 548. [林原, 王尚华, 付年庆,张敬波, 周晓文, 肖绪瑞. 化学进展, 2011, 23, 548.]

    7. [7]

      (7) Wu, G. H.; Kong, F. T.; Weng, J.; Dai, S. Y.; Xi, X. W.; Zhang,C. N. Prog. Chem. 2011, 23, 1929. [武国华, 孔凡太,翁坚,戴松元, 奚小网, 张昌能. 化学进展, 2011, 23, 1929.]

    8. [8]

      (8) Lan, Z.; Wu, J. H.; Lin, J. M.; Huang, M. L. J. Synth. Cryst.2012, 41, 227. [兰章,吴季怀,林建明,黄妙良. 人工晶体学报, 2012, 41, 227.]

    9. [9]

      (9) Hao, S. C.; Wu, J. H.; Fan, L. Q.; Huang, Y. F.; Lin, H. M.; Wei,Y. L. Sol. Energy 2004, 76, 745. doi: 10.1016/j.solener.2003.12.010

    10. [10]

      (10) Wang, Z. S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H.Langmuir 2005, 21, 4272. doi: 10.1021/la050134w

    11. [11]

      (11) Murayama, M.; Mori, T. Thin Solid Films 2006, 509, 123. doi: 10.1016/j.tsf.2005.09.145

    12. [12]

      (12) Jung, H. S.; Lee, J. K.; Lee, S.; Hong, K. S.; Shin, H. J. Phys. Chem. C 2008, 112, 8476. doi: 10.1021/jp711689u

    13. [13]

      (13) Lee, M. K.; Yen, H.; Hsiao, C. C. J. Electrochem. Soc. 2011,158, K136.

    14. [14]

      (14) Ko, K. H.; Lee, Y. C.; Jung, Y. J. J. Colloid Interface Sci. 2005,283, 482. doi: 10.1016/j.jcis.2004.09.009

    15. [15]

      (15) Kay, A.; Grätzel, M. J. Phys. Chem. 1993, 97, 6272. doi: 10.1021/j100125a029

    16. [16]

      (16) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Grätzel, M. J. Phys. Chem. B 2003, 107, 14336. doi: 10.1021/jp0365965

    17. [17]

      (17) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.;Grätzel, M. Adv. Mater. 2003, 15, 2101.

    18. [18]

      (18) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M.Chem. Mater. 2004, 16, 2694. doi: 10.1021/cm049916l

    19. [19]

      (19) Zhang, Z. P.; Zakeeruddin, S. M.; O'Regan, B. C.; Humphry-Baker, R.; Grätzel, M. J. Phys. Chem. B 2005, 109, 21818. doi: 10.1021/jp054305h

    20. [20]

      (20) Kopidakis, N.; Neale, N. R.; Frank, A. J. J. Phys. Chem. B 2006,110, 12485. doi: 10.1021/jp0607364

    21. [21]

      (21) Xu, W.; Pei, J.; Shi, J. F.; Peng, S. J.; Chen, J. J. Power Sources2008, 183, 792. doi: 10.1016/j.jpowsour.2008.05.025

    22. [22]

      (22) Yum, J. H.; Moon, S. J.; Humphry-Baker, R.; Walter, P.; Geiger,T.; Nuesch, F.; Grätzel, M.; Nazeeruddin, M. K.Nanotechnology 2008, 19, 424005. doi: 10.1088/0957-4484/19/42/424005

    23. [23]

      (23) Allegrucci, A.; Lewcenko, N. A.; Mozer, A. J.; Dennany, L.;Wagner, P.; Officer, D. L.; Sunahara, K.; Mori, S.; Spiccia, L.Energy Environ. Sci. 2009, 2, 1069. doi: 10.1039/b909709k

    24. [24]

      (24) Marinado, T.; Hahlin, M.; Jiang, X.; Quintana, M.; Johansson,E. M. J.; Gabrielsson, E.; Plogmaker, S.; Hagberg, D. P.;Boschloo, G.; Zakeeruddin, S. M.; Grätzel, M.; Siegbahn, H.;Sun, L.; Hagfeldt, A.; Rensmo, H. J. Phys. Chem. C 2010, 114,11903. doi: 10.1021/jp102381x

    25. [25]

      (25) Mikroyannidis, J. A.; Suresh, P.; Roy, M. S.; Sharma, G. D.Electrochim. Acta 2011, 56, 5616. doi: 10.1016/j.electacta.2011.04.011

    26. [26]

      (26) Cid, J. J.; Yum, J. H.; Jang, S. R.; Nazeeruddin, M. K.; Martínez-Ferrero, E.; Palomares, E.; Ko, J.; Grätzel, M.; Torres, T. Angew. Chem. Int. Edit. 2007, 46, 8358.

    27. [27]

      (27) Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Grätzel, M. Chem. Commun. 2002, 2972.

    28. [28]

      (28) Kusama, H.; Konishi, Y.; Sugihara, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2003, 80, 167. doi: 10.1016/j.solmat.2003.08.001

    29. [29]

      (29) Kusama, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2004,81, 87. doi: 10.1016/j.solmat.2003.09.001

    30. [30]

      (30) Watson, D. F.; Meyer, G. J. Coord. Chem. Rev. 2004, 248, 1391.doi: 10.1016/j.ccr.2004.02.015

    31. [31]

      (31) Nakade, S.; Kanzaki, T.; Kambe, S.; Wada, Y. J.; Yanagida, S.Langmuir 2005, 21, 11414. doi: 10.1021/la051483t

    32. [32]

      (32) Zhang, C.; Dai, J.; Huo, Z.; Pan, X.; Hu, L.; Kong, F.; Huang,Y.; Sui, Y.; Fang, X.; Wang, K.; Dai, S. Electrochim. Acta 2008,53, 5503. doi: 10.1016/j.electacta.2008.03.016

    33. [33]

      (33) Zhang, C.; Huang, Y.; Huo, Z.; Chen, S.; Dai, S. J. Phys. Chem. C 2009, 113, 21779. doi: 10.1021/jp909732f

    34. [34]

      (34) Kim, M. J.; Lee, C. R.; Jeong, W. S.; Im, J. H.; Ryu, T. I.; Park,N. G. J. Phys. Chem. C 2010, 114, 19849. doi: 10.1021/jp107437h

    35. [35]

      (35) Huang, K. C.; Vittal, R.; Ho, K. C. Sol. Energy Mater. Sol. Cells2010, 94, 675. doi: 10.1016/j.solmat.2009.11.002

    36. [36]

      (36) Ma, B.; Gao, R.; Wang, L.; Zhu, Y.; Shi, Y.; Geng, Y.; Dong, H.;Qiu, Y. Sci. China-Chem. 2010, 53, 1669. doi: 10.1007/s11426-010-4042-8

    37. [37]

      (37) Thavasi, V.; Renu palakrishnan, V.; Jose, R.; Ramakrishna, S.Mater. Sci. Eng. R 2009, 63, 81. doi: 10.1016/j.mser.2008.09.001

    38. [38]

      (38) Zhang, Q.; Cao, G. Nano Today 2011, 6, 91. doi: 10.1016/j.nantod.2010.12.007

    39. [39]

      (39) Sommeling, P. M.; O'Regan, B. C.; Haswell, R. R.; Smit, H. J.P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; van Roosmalen, J.A. M. J. Phys. Chem. B 2006, 110, 19191. doi: 10.1021/jp061346k

    40. [40]

      (40) O'Regan, B. C.; Durrant, J. R.; Sommeling, P. M.; Bakker, N. J.J. Phys. Chem. C 2007, 111, 14001. doi: 10.1021/jp073056p

    41. [41]

      (41) Zhuang, D. T.; Lin, H.; Li, X.; Li, J. B. J. Chin. Ceram. Soc.2010, 38, 1848. [庄东填,林红,李鑫,李建保.硅酸盐学报, 2010, 38, 1848.]

    42. [42]

      (42) Kay, A.; Grätzel, M. Chem. Mater. 2002, 14, 2930. doi: 10.1021/cm0115968

    43. [43]

      (43) Feng, Y.; Ji, X.; Duan, J.; Zhu, J.; Jiang, J.; Ding, H.; Meng, G.;Ding, R.; Liu, J.; Hu, A.; Huang, X. J. Solid State Chem. 2012,190, 303. doi: 10.1016/j.jssc.2012.02.026

    44. [44]

      (44) Ma, T. L.; Akiyama, M.; Abe, E.; Imai, I. Nano Lett. 2005, 5,2543. doi: 10.1021/nl051885l

    45. [45]

      (45) Tian, H.; Hu, L.; Zhang, C.; Liu, W.; Huang, Y.; Mo, L.; Guo,L.; Sheng, J.; Dai, S. J. Phys. Chem. C 2010, 114, 1627. doi: 10.1021/jp9103646

    46. [46]

      (46) Tian, H.; Hu, L.; Li, W.; Sheng, J.; Xu, S.; Dai, S. J. Mater. Chem. 2011, 21, 7074. doi: 10.1039/c1jm10853k

    47. [47]

      (47) Tian, H.; Hu, L.; Zhang, C.; Chen, S.; Sheng, J.; Mo, L.; Liu,W.; Dai, S. J. Mater. Chem. 2011, 21, 863. doi: 10.1039/c0jm02941f

    48. [48]

      (48) Zhang, X.; Liu, F.; Huang, Q. L.; Zhou, G.; Wang, Z. S. J. Phys. Chem. C 2011, 115, 12665. doi: 10.1021/jp201853c

    49. [49]

      (49) ng, J.; Pu, W.; Yang, C.; Zhang, J. Chem. Eng. J. 2012, 209,94. doi: 10.1016/j.cej.2012.07.137

    50. [50]

      (50) Barbé, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.;Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    51. [51]

      (51) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M.J. Phys. Chem. B 2003, 107, 8981. doi: 10.1021/jp022656f

    52. [52]

      (52) Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Péchy, P.; Bach, U.;Schmidt-Mende, L.; Zakeeruddin, S. M.; Kay, A.; Nazeeruddin,M. K.; Grätzel, M. Chem. Commun. 2005, 4351.

    53. [53]

      (53) Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.;Nazeeruddin, M. K.; Grätzel, M. Thin Solid Films 2008, 516,4613. doi: 10.1016/j.tsf.2007.05.090

    54. [54]

      (54) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.;Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063

    55. [55]

      (55) Zeng, L. Y.; Dai, S. Y.; Wang, K. J.; Pan, X.; Shi, C. W.; Guo, L.Chin. Phys. Lett. 2004, 21, 1835. doi: 10.1088/0256-307X/21/9/045

    56. [56]

      (56) Hao, Y. Z.; Wang, L. G. Chin. J. Inorg. Chem. 2007, 23, 2039.[郝彦忠, 王利刚. 无机化学学报, 2007, 23, 2039.]

    57. [57]

      (57) Hao, Y. Z.; Wang, L. G. Acta Chim. Sin. 2008, 66, 757. [郝彦忠,王利刚. 化学学报, 2008, 66, 757.]

    58. [58]

      (58) Song, M. Y.; Kim, D. K.; Jo, S. M.; Kim, D. Y. Synth. Met.2005, 155, 635. doi: 10.1016/j.synthmet.2005.08.018

    59. [59]

      (59) Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985. doi: 10.1021/ja8078972

    60. [60]

      (60) Charoensirithavorn, P.; O mi, Y.; Sagawa, T.; Hayase, S.;Yoshikawaa, S. J. Electrochem. Soc. 2010, 157, B354.

    61. [61]

      (61) Wang, J.; Lin, Z. Chem. Mater. 2010, 22, 579. doi: 10.1021/cm903164k

    62. [62]

      (62) Yu, H.; Zhang, S.; Zhao, H.; Xue, B.; Liu, P.;Will, G. J. Phys. Chem. C 2009, 113, 16277. doi: 10.1021/jp9041974

    63. [63]

      (63) Xu, W. W.; Dai, S. Y.; Fang, X. Q.; Hu, L. H.; Kong, F. T.; Pan,X.; Wang, K. J. Acta Phys. Sin. 2005, 54, 5943. [徐炜炜, 戴松元, 方霞琴,胡林华, 孔凡太,潘旭,王孔嘉.物理学报, 2005,54, 5943.]

    64. [64]

      (64) Wang, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem. B 2001, 105,9210. doi: 10.1021/jp010667n

    65. [65]

      (65) Alarcón, H.; Boschloo, G.; Mendoza, P.; Solis, J. L.; Hagfeldt,A. J. Phys. Chem. B 2005, 109, 18483. doi: 10.1021/jp0513521

    66. [66]

      (66) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J.R. J. Am. Chem. Soc. 2003, 125, 475. doi: 10.1021/ja027945w

    67. [67]

      (67) Kim, J. T.; Kim, S. H. Sol. Energy Mater. Sol. Cells 2011, 95,336. doi: 10.1016/j.solmat.2010.04.045

    68. [68]

      (68) Wu, S. J.; Gao, X. S.; Qin, M. H.; Liu, J. M.; Hu, S. J. Appl. Phys. Lett. 2011, 99, 042106. doi: 10.1063/1.3617460

    69. [69]

      (69) Antila, L. J.; Heikkilä, M. J.; Mäkinen, V.; Humalamäki, N.;Laitinen, M.; Linko, V.; Jalkanen, P.; Toppari, J.; Aumanen, V.;Kemell, M.; Myllyperkiö, P.; Honkala, K.; Häkkinen, H.;Leskelä, M.; Korppi-Tommola, J. E. I. J. Phys. Chem. C 2011,115, 16720. doi: 10.1021/jp204886n

    70. [70]

      (70) Chen, S. G.; Chappel, S.; Diamant, Y.; Zaban, A. Chem. Mater.2001, 13, 4629. doi: 10.1021/cm010343b

    71. [71]

      (71) Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem. B 2003, 107, 1977. doi: 10.1021/jp027827v

    72. [72]

      (72) Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed, O.; Zaban, A.Coord. Chem. Rev. 2004, 248, 1271. doi: 10.1016/j.ccr.2004.03.003

    73. [73]

      (73) Wu, S.; Han, H.; Tai, Q.; Zhang, J.; Xu, S.; Zhou, C.; Yang, Y.;Hu, H.; Chen, B.; Zhao, X. Z. J. Power Sources 2008, 182, 119.doi: 10.1016/j.jpowsour.2008.03.054

    74. [74]

      (74) Jung, H. S.; Lee, J. K.; Nastasi, M.; Lee, S. W.; Kim, J. Y.; Park,J. S.; Hong, K. S.; Shin, H. Langmuir 2005, 21, 10332. doi: 10.1021/la051807d

    75. [75]

      (75) Li, W. X.; Hu, L. H.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27,2367. [李文欣, 胡林华,戴松元. 物理化学学报, 2011, 27,2367.] doi: 10.3866/PKU.WHXB20111011

    76. [76]

      (76) Wang, Z. S.; Yanagida, M.; Sayama, K.; Sugihara, H. Chem. Mater. 2006, 18, 2912. doi: 10.1021/cm0603102

    77. [77]

      (77) Wu, X. M.; Wang, L. D.; Luo, F.; Ma, B.; Zhan, C.; Qiu, Y.J. Phys. Chem. C 2007, 111, 8075. doi: 10.1021/jp0706533

    78. [78]

      (78) Park, S. K.; Kim, C.; Kim, J. H.; Bae, J. Y.; Han, Y. S. Curr. Appl. Phys. 2011, 11, S131.

    79. [79]

      (79) Alarcón, H.; Hedlund, M.; Johansson, E. M. J.; Rensmo, H.;Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2007, 111, 13267.doi: 10.1021/jp072641n

    80. [80]

      (80) Yang, S. M.; Kou, H. Z.; Wang, L.; Wang, H. J.; Fu, W. H. Acta Phys. -Chim. Sin. 2009, 25, 1219. [杨术明, 寇慧芝, 汪玲,王红军, 付文红. 物理化学学报, 2009, 25, 1219.] doi: 10.3866/PKU.WHXB20090526

    81. [81]

      (81) Zhang, C. N.; Chen, S. H.; Mo, L. E.; Huang, Y.; Tian, H. J.;Hu, L. H.; Huo, Z. P.; Dai, S. Y.; Kong, F. T.; Pan, X. J. Phys. Chem. C 2011, 115, 16418. doi: 10.1021/jp2024318

    82. [82]

      (82) Duan, Y.; Fu, N.; Liu, Q.; Fang, Y.; Zhou, X.; Zhang, J.; Lin, Y.J. Phys. Chem. C 2012, 116, 8888. doi: 10.1021/jp212517k

    83. [83]

      (83) Chen, H.; Yao, J. H.; Cao, Y. A. Acta Phys. -Chim. Sin. 2012, 28,2632. [程辉, 姚江宏, 曹亚安.物理化学学报, 2012, 28,2632.] doi: 10.3866/PKU.WHXB201207301

    84. [84]

      (84) Liu, J.; Yang, H.; Tan, W.; Zhou, X.; Lin, Y. Electrochim. Acta2010, 56, 396. doi: 10.1016/j.electacta.2010.08.063

    85. [85]

      (85) Liu, Q. P.; Huang, H. J.; Zhou, Y.; Duan, Y. D.; Sun, Q. W.; Lin,Y. Acta Phys. -Chim. Sin. 2012, 28, 591. [刘秋平, 黄慧娟,周洋,段彦董, 孙庆文, 林原. 物理化学学报, 2012, 28,591.] doi: 10.3866/PKU.WHXB201112161

    86. [86]

      (86) Wang, M.; Bai, S.; Chen, A.; Duan, Y.; Liu, Q.; Li, D.; Lin, Y.Electrochim. Acta 2012, 77, 54. doi: 10.1016/j.electacta.2012.05.050

    87. [87]

      (87) Yang, S. M.; Li, F. Y.; Huang, C. H. Sci. China Ser. B 2003, 33,59. [杨术明, 李富友,黄春辉. 中国科学B 辑, 2003, 33, 59.]

    88. [88]

      (88) Xu, W. W.; Dai, S. Y.; Hu, L. H.; Liang, L. Y.; Wang, K. J. Chin. Phys. Lett. 2006, 23, 2288. doi: 10.1088/0256-307X/23/8/089

    89. [89]

      (89) Kim, S. K.; Son, M. K.; Kim, J. K.; Kim, B. M.; Hong, N. Y.;Prabakar, K.; Kim, H. J. J. Jpn. Inst. Met. 2012, 51, 09MA05-1.

    90. [90]

      (90) Li, J.; Kong, F. T.; Wu, G. H.; Zhang, C. N.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 881. [李洁, 孔凡太,武国华, 张昌能, 戴松元.物理化学学报, 2011, 27, 881.] doi: 10.3866/PKU.WHXB20110413

    91. [91]

      (91) Li, J.;Wu, W.; Yang, J.; Tang, J.; Long, Y.; Hua, J. Sci. China Chem. 2011, 54, 699.

    92. [92]

      (92) Sharma, G. D.; Kurchania, R.; Ball, R. J.; Roy, M. S.;Mikroyannidis, J. A. Int. J. Photoenergy 2012, 2012, 983081

    93. [93]

      (93) Zhang, Z.; Evans, N.; M.Zakeeruddin, S.; Hunphry-Baker, R.;Grätzel, M. J. Phys. Chem. B 2007, 111, 398

    94. [94]

      (94) Li, X.; Lin, H.; Zakeeruddin, S. M.; Grätzel, M.; Li, J. Chem. Lett. 2009, 38, 322. doi: 10.1246/cl.2009.322

    95. [95]

      (95) Kwon, Y. S.; Song, I. Y.; Lim, J.; Park, S. H.; Siva, A.; Park, Y.C.; Jang, H. M.; Park, T. RSC Adv. 2012, 2, 3467. doi: 10.1039/c2ra01251k

    96. [96]

      (96) Galoppini, E. Coord. Chem. Rev. 2004, 248, 1283. doi: 10.1016/j.ccr.2004.03.016

    97. [97]

      (97) Wang, M.; Li, X.; Lin, H.; Pechy, P.; Zakeeruddin, S. M.;Grätzel, M. Dalton Trans. 2009, 45, 10015.

    98. [98]

      (98) Li, X.; Lin, H.; Li, J. B. Rare Metal Mat. Eng. 2009, 38 (Suppl.2), 1047. [李鑫,林红,李建保.稀有金属材料与工程,2009, 38 (Suppl. 2), 1047.]

    99. [99]

      (99) Shen, H.; Lin, H.; Liu, Y.; Li, X.; Zhang, J.; Wang, N.; Li, J.Electrochim. Acta 2011, 56, 2092. doi: 10.1016/j.electacta.2010.11.087

    100. [100]

      (100) Lin, H.; Liu, Y.; Liu, C.; Li, X.; Shen, H.; Zhang, J.; Ma, T.; Li,J. J. Electroanal. Chem. 2011, 653, 81.

    101. [101]

      (101) Song, B. J.; Song, H. M.; Choi, I. T.; Kim, S. K.; Seo, K. D.;Kang, M. S.; Lee, M. J.; Cho, D. W.; Ju, M. J.; Kim, H. K.Chem. Eur. J. 2011, 17, 11115. doi: 10.1002/chem.201100813

    102. [102]

      (102) Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.;Zhang, S.; Yang, X.; Yanagida, M. Energy Environ. Sci. 2012,5, 6057. doi: 10.1039/c2ee03418b

    103. [103]

      (103) Hara, K.; Dan-Oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga,S.; Sayama, K.; Arakawa, H. Langmuir 2004, 20, 4205. doi: 10.1021/la0357615

    104. [104]

      (104) Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Grätzel, M.;Frank, A. J. J. Phys. Chem. B 2005, 109, 23183. doi: 10.1021/jp0538666

    105. [105]

      (105) Wang, Z. S.; Cui, Y.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.;Hara, K. J. Phys. Chem. C 2007, 111, 7224. doi: 10.1021/jp067872t

    106. [106]

      (106) Ren, X.; Feng, Q.; Zhou, G.; Huang, C. H.; Wang, Z. S.J. Phys. Chem. C 2010, 114, 7190. doi: 10.1021/jp911630z

    107. [107]

      (107) Kuang, D.; Walter, P.; Nüeesch, F.; Kim, S.; Ko, J.; Comte, P.;Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.Langmuir 2007, 23, 10906. doi: 10.1021/la702411n

    108. [108]

      (108) Bessho, T.; Zakeeruddin, S. M.; Yeh, C. Y.; Diau, E. W. G.;Grätzel, M. Angew. Chem. Int. Edit. 2010, 49, 6646. doi: 10.1002/anie.201002118

    109. [109]

      (109) Fan, S. Q.; Kim, C.; Fang, B.; Liao, K. X.; Yang, G. J.; Li, C.J.; Kim, J. J.; Ko, J. J. Phys. Chem. C 2011, 115, 7747. doi: 10.1021/jp200700e

    110. [110]

      (110) Lee, K. M.; Hsu, Y. C.; Ikegami, M.; Miyasaka, T.; Thomas, K.R. J.; Lin, J. T.; Ho, K. M. J. Power Sources 2011, 196, 2416.doi: 10.1016/j.jpowsour.2010.10.041

    111. [111]

      (111) Akhtaruzzaman, M.; Islam, A.; Karim, M. R.; Hasan, A. K. M.;Han, L. J. Chem. 2012, 2013, 910527.

    112. [112]

      (112) Chen, Y. S.; Zeng, Z. H.; Li, C.; Wang, W. B.; Wang, X. S.;Zhang, B. W. New J. Chem. 2005, 29, 773. doi: 10.1039/b502725j

    113. [113]

      (113) Li, C.; Zhou, J. H.; Chen, J. R.; Chen, Y. S.; Zhang, X. H.;Ding, H. Y.; Wang, W. B.; Wang, X. S.; Zhang, B. W. Chin. J. Chem. 2006, 24, 537.

    114. [114]

      (114) Zuo, P.; Li, C.; Wu, Y. S.; Ai, X. C.; Wang, X. S.; Zhang, B.W.; Zhang, J. P. J. Photochcm. Photobiol. A 2006, 183, 138.doi: 10.1016/j.jphotochem.2006.03.007

    115. [115]

      (115) Song, X. R.; Wang, W. B.; Zhang, X. H.; Li, C.; Wang, X. S.;Zhang, B. W. Acta Chim. Sin. 2008, 66, 1687. [宋晓睿,王维波,张雪华,李超,王雪松, 张宝文. 化学学报, 2008, 66,1687.]

    116. [116]

      (116) Nguyen, L. H.; Mulmudi, H. K.; Sabba, D.; Kulkarni, S. A.;Batabyal, S. K.; Nonomura, K.; Grätzel, M.; Mhaisalkar, S. G.Phys. Chem. Chem. Phys. 2012, 14, 16182. doi: 10.1039/c2cp42959d

    117. [117]

      (117) Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Grätzel, M.; Frank,A. J. J. Phys. Chem. B 1997, 101, 2576. doi: 10.1021/jp962377q

    118. [118]

      (118) Boschloo, G.; Häggman, L.; Hagfeldt, A. J. Phys. Chem. B2006, 110, 13144. doi: 10.1021/jp0619641

    119. [119]

      (119) Shi, C. W.; Dai, S. Y.; Wang, K. J.; Pan, X.; Kong, F. T.; Hu, L.H. Vib. Spectrosc. 2005, 39, 99. doi: 10.1016/j.vibspec.2005.01.002

    120. [120]

      (120) Greijer, H.; Lindgren, J.; Hagfeldt, A. J. Phys. Chem. B 2001,105, 6314. doi: 10.1021/jp011062u

    121. [121]

      (121) Wang, Z. S.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.;Suga, S.; Arakawa, H.; Sugihara, H. J. Phys. Chem. B 2005,109, 3907. doi: 10.1021/jp044851v

    122. [122]

      (122) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara,K. J. Phys. Chem. C 2007, 111, 7224. doi: 10.1021/jp067872t

    123. [123]

      (123) Pei, J.; Peng, S.; Jifu, S.; Liang, Y.; Tao, Z.; Liang, J.; Chen, J.J. Power Sources 2009, 187, 620. doi: 10.1016/j.jpowsour.2008.11.028

    124. [124]

      (124) Yin, X.; Zhao, H.; Chen, L.; Tan, W.; Zhang, J.; Weng, Y.;Shuai, Z.; Xiao, X.; Zhou, X.; Li, X.; Lin, Y. Surf. Interface Anal. 2007, 39, 809.

    125. [125]

      (125) Yin, X.; Tan, W.; Zhang, J.; Weng, Y.; Xiao, X.; Zhou, X.; Li,X.; Lin, Y. Colloid Surface A 2008, 326, 42. doi: 10.1016/j.colsurfa.2008.05.013

    126. [126]

      (126) Boschloo, G.; Lindström, J.; Magnusson, E.; Holmberg, A.;Hagfeldt, A. J. Photochem. Photobiol. A 2002, 148, 11. doi: 10.1016/S1010-6030(02)00072-2

    127. [127]

      (127) Boschloo, G.; Hagfeldt, A. Chem. Phys. Lett. 2003, 370, 381.doi: 10.1016/S0009-2614(03)00029-0

    128. [128]

      (128) Yang, H.; Liu, J.; Lin, Y.; Zhang, J.; Zhou, X. Electrochim. Acta 2011, 56, 6271. doi: 10.1016/j.electacta.2011.05.054

    129. [129]

      (129) Kuang, D. B.; Klein, C.; Ito, S.; Moser, J. E.; Humphry-Baker,R.; Evans, N.; Duriaux, F.; Grätzel, C.; Zakeeruddin, S. M.;Grätzel, M. Adv. Mater. 2007, 19, 1133.

    130. [130]

      (130) Zhao, J.; Yan, F.; Qiu, L.; Zhang, Y.; Chen, X.; Sun, B. Chem. Commun. 2011, 47, 11516. doi: 10.1039/c1cc15069c

    131. [131]

      (131) Shi, C. W.; Ge, Q.; Li, B.; Tao, L.; Liu, Q. A. Acta Phys. - Chim. Sin. 2008, 24, 2327. [史成武,葛茜,李兵,桃李,刘清安.物理化学学报, 2008, 24, 2327.] doi: 10.3866/PKU.WHXB20081230

    132. [132]

      (132) Kusama, H.; Kurashige, M.; Arakawa, H. J. Photochem. Photobiol. A 2005, 169, 169. doi: 10.1016/j.jphotochem.2004.06.012

    133. [133]

      (133) Kusama, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2005,85, 333. doi: 10.1016/j.solmat.2004.05.003

    134. [134]

      (134) Kelly, C. A.; Farzad, F.; Thompson, D. W.; Stipkala, J. M.;Meyer, G. J. Langmuir 1999, 15, 7047. doi: 10.1021/la990617y

    135. [135]

      (135) Kopidakis, N.; Benkstein, K. D.; van de Lagemaat, J.; Frank,A. J. J. Phys. Chem. B 2003, 107, 11307.

    136. [136]

      (136) Koops, S. E.; O'Regan, B. C.; Barnes, P. R. F.; Durrant, J. R.J. Am. Chem. Soc. 2009, 131, 4808. doi: 10.1021/ja8091278

    137. [137]

      (137) Stergiopoulos, T.; Rozi, E.; Karagianni, C. S.; Falaras, P.Nanoscale Res. Lett. 2011, 6, 307. doi: 10.1186/1556-276X-6-307

    138. [138]

      (138) Liu, X.; Qin, D.; Fan, Y.; Li, K.; Li, D.; Meng, Q. Electrochem. Commun. 2007, 9, 1735. doi: 10.1016/j.elecom.2007.03.029

    139. [139]

      (139) Shi, C. W.; Dai, S. Y.; Wang, K. J.; Pan, X.; Guo, L.; Hu, L. H.;Kong, F. T. Chin. J. Chem. 2005, 23, 251.

    140. [140]

      (140) Raja, S.; Satheeshkumar, C.; Rajakumar, P.; Ganesan, S.;Maruthamuthu, P. J. Mater. Chem. 2011, 21, 7700. doi: 10.1039/c1jm10334b

    141. [141]

      (141) Cai, M.; Pan, X.; Liu, W.; Sheng, J.; Fang, X.; Zhang, C.; Huo,Z.; Tian, H.; Xiao, S.; Dai, S. J. Mater. Chem. A 2013, 1,4885.doi: 10.1039/c3ta00835e

    142. [142]

      (142) Kisserwan, H.; Ghaddar, T. H. Dalton Trans. 2011, 40, 3877.doi: 10.1039/c0dt01554g

    143. [143]

      (143) Zhu, Y.; Shi, Y.; Wang, L.; Gao, R.; Ma, B.; Geng, Y.; Qiu, Y.Phys. Chem. Chem. Phys. 2010, 12, 15001. doi: 10.1039/c004372a

    144. [144]

      (144) Wang, M.; Pan, X.; Fang, X.; Guo, L.; Liu, W.; Zhang, C.;Huang, Y.; Hu, L.; Dai, S. Adv. Mater. 2010, 22, 5526. doi: 10.1002/adma.v22.48

    145. [145]

      (145) Zhao, J.; Sun, B.; Qiu, L.; Caocen, H.; Li, Q.; Chen, X.; Yan, F.J. Mater. Chem. 2012, 22, 18380. doi: 10.1039/c2jm32607h


  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    7. [7]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    16. [16]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

Metrics
  • PDF Downloads(1340)
  • Abstract views(912)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return