Citation: ZHANG Shuan-Qin, KONG Ling-Dong, ZHAO Xi, Roel JANSEN, CHEN Jian-Min. Effects of Ammonia and Amines on Heterogeneous Oxidation of Carbonyl Sulfide on Hematite[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 2027-2034. doi: 10.3866/PKU.WHXB201306171 shu

Effects of Ammonia and Amines on Heterogeneous Oxidation of Carbonyl Sulfide on Hematite

  • Received Date: 22 March 2013
    Available Online: 17 June 2013

    Fund Project: 国家自然科学基金(21077025, 21277028, 21190053) (21077025, 21277028, 21190053)上海市科学技术委员会项目(10231203801, 10JC1401600)资助 (10231203801, 10JC1401600)

  • The heterogeneous oxidation of carbonyl sulfide (COS) on hematite pre-adsorbed with ammonia and methylamine, trimethylamine, triethylamine, phenylamine, pyridine, and pyrrole was investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS) at room temperature. The products and kinetics of the heterogeneous reaction were investigated. The results showed that adsorbed COS could be oxidized on the surface of hematite pre-adsorbed with these basic substances, forming gaseous carbon dioxide (CO2), surface bicarbonate (HCO3-), surface carbonate (CO32-), and surface SO42-. Ammonia and amines pre-adsorbed on hematite significantly enhanced the reactivity of COS. Hematite with pre-adsorbed methylamine exhibited the highest reactivity, about 4.5 times higher than that of pure hematite, whereas the effects of phenylamine and pyrrole were not obvious. The reaction rates with the basic substances were in the order of methylamine>trimethylamine>ammonia>triethylamine>pyridine> pyrrole> phenylamine≈pure hematite. The basic substances changed the reaction order from first to second. Coverage by the basic substances and surface water also played important roles in the heterogeneous reaction of COS. These experimental results indicated that surface oxygen species (M―O-) were the key factor contributing to oxidizing activities in the presence of basic substances. The heterogeneous oxidation mechanism of COS on hematite with pre-adsorbed basic substances is discussed on the basis of the experimental results.

  • 加载中
    1. [1]

      (1) Turco, R. P.;Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill,P. Nature 1980, 283, 283. doi: 10.1038/283283a0

    2. [2]

      (2) Sze, N. D.; Ko, M. K. W. Nature 1979, 278, 731. doi: 10.1038/278731a0

    3. [3]

      (3) Sze, N. D.; Ko, M. K. W. Nature 1979, 280, 308. doi: 10.1038/280308a0

    4. [4]

      (4) Sze, N. D.; Ko, M. K. W. Atmos. Environ. 1980, 14, 1223. doi: 10.1016/0004-6981(80)90225-5

    5. [5]

      (5) Svoronos, P. D. N.; Bruno, T. J. Ind. Eng. Chem. Res. 2002, 41,5321. doi: 10.1021/ie020365n

    6. [6]

      (6) Torres, A. L.; Maroulis, P. J.; ldberg, A. B.; Bandy, A. R. J. Geophys. Res. 1980, 85, 7357. doi: 10.1029/JC085iC12p07357

    7. [7]

      (7) Rasmussen, R. A.; Khalil, M. A. K.; Hoyt, S. D. Atmos. Environ.1982, 16, 1591. doi: 10.1016/0004-6981(82)90111-1

    8. [8]

      (8) Watts, S. F. Atmos. Environ. 2000, 34, 761. doi: 10.1016/S1352-2310(99)00342-8

    9. [9]

      (9) Wu, H. B.; Wang, X.; Chen, J. M.; Yu, H. K.; Xue, H. X.; Pan,X. X.; Hou, H. Q. Chin. Sci. Bull. 2004, 49, 739. [吴洪波,王晓, 陈建民,俞宏坤, 薛华欣,潘循晳, 侯惠奇.科学通报,2004, 49, 739.] doi: 10.1360/03wb0132

    10. [10]

      (10) He, H.; Liu, J. F.; Mu, Y. J.; Yu, Y. B.; Chen, M. X. Environ. Sci. Technol. 2005, 39, 9637. doi: 10.1021/es048865q

    11. [11]

      (11) Liu, J. F.; Yu, Y. B.; Mu, Y. J.; He, H. J. Phys. Chem. B 2006,110, 3225. doi: 10.1021/jp055646y

    12. [12]

      (12) Liu, Y. C.; He, H.; Xu, W. Q.; Yu, Y. B. J. Phys. Chem. A 2007,111, 4333. doi: 10.1021/jp069015v

    13. [13]

      (13) Liu, Y. C.; He, H. J. Phys. Chem. A 2009, 113, 3387. doi: 10.1021/jp809887c

    14. [14]

      (14) Chen, H. H.; Kong, L. D.; Chen, J. M.; Zhang, R. Y.; Wang, L.Environ. Sci. Technol. 2007, 41, 6484. doi: 10.1021/es070717n

    15. [15]

      (15) Yu, Y. J.; Zhang, S. Q.; Kong, L. D.; Lin, L.; Cheng, T. T.; Chen,J. M. Acta Phys. -Chim. Sin. 2011, 27, 2275. [俞偐偼,张拴勤,孔令东,林立,成天涛,陈建民. 物理化学学报, 2011, 27,2275.] doi: 10.3866/PKU.WHXB20110912

    16. [16]

      (16) Usher, C. R.; Michel, A. E.; Grassian, V. H. Chem. Rev. 2003,103, 4883. doi: 10.1021/cr020657y

    17. [17]

      (17) Wang, X. F.; Gao, S.; Yang, X.; Chen, H.; Chen, J. M.; Zhuang,G. S.; Surratt, J. D.; Chan, M. N.; Seinfeld, J. H. Environ. Sci. Technol. 2010, 44, 4441. doi: 10.1021/es1001117

    18. [18]

      (18) Cadle, S. H.; Mulawa, P. A. Environ. Sci. Technol. 1980, 14,718. doi: 10.1021/es60166a011

    19. [19]

      (19) Westerholm, R.; Li, H.; Almen, J. Chemosphere 1993, 27, 1381.doi: 10.1016/0045-6535(93)90231-S

    20. [20]

      (20) Chen, C. P.; Veregin, R. P.; Harbour, J. R.; Hair, M. L. Chin. Sci. Bull. 1994, 39, 744. [陈次平, Veregin, R. P., Harbour, J. R.,Hair, M. L.科学通报, 1994, 39, 744.]

    21. [21]

      (21) Vanneste, A.; Duce, R. A.; Lee, C. Geophys. Res. Lett. 1987, 14,711. doi: 10.1029/GL014i007p00711

    22. [22]

      (22) Zhang, Q.; Anastasio, C. Atmos. Environ. 2003, 37, 2247. doi: 10.1016/S1352-2310(03)00127-4

    23. [23]

      (23) Lavalley, J. C. Catal. Today 1996, 27, 377. doi: 10.1016/0920-5861(95)00161-1

    24. [24]

      (24) Lercher, J. A.; Grundling, C.; EderMirth, G. Catal. Today 1996,27, 353. doi: 10.1016/0920-5861(95)00248-0

    25. [25]

      (25) Sarria, F. R.; Blasin-Aube, V.; Saussey, J.; Marie, O.; Daturi, M.J. Phys. Chem. B 2006, 110, 13130. doi: 10.1021/jp061729i

    26. [26]

      (26) Qiu, C.; Zhang, R. Y. Environ. Sci. Technol. 2012, 46, 4474.doi: 10.1021/es3004377

    27. [27]

      (27) Gai, Y. B.; Ge, M. F.; Wang, W. G. Acta Phys. -Chim. Sin. 2010,26, 1768. [盖艳波, 葛茂发, 王玮罡. 物理化学学报, 2010,26, 1768.] doi: 10.3866/PKU.WHXB20100705

    28. [28]

      (28) Yin, S.; Ge, M. F.; Wang, W. G.; Liu, Z.; Wang, D. X. Chin. Sci. Bull. 2011, 56, 1241. [殷实,葛茂发,王炜罡,刘泽,王殿勋.科学通报, 2011, 56, 1241.]

    29. [29]

      (29) Qiu, C.; Wang, L.; Lal, V.; Khalizov, A. F.; Zhang, R. Y.Environ. Sci. Technol. 2011, 45, 4748. doi: 10.1021/es1043112

    30. [30]

      (30) Dohrmann, J.; Glebov, A.; Toennies, J. P.; Weiss, H. Surf. Sci .1996, 368, 118. doi: 10.1016/S0039-6028(96)01038-2

    31. [31]

      (31) Amenomiya, Y.; Morikawa, Y.; Pleizier, G. J. Catal. 1977, 46,431. doi: 10.1016/0021-9517(77)90230-5

    32. [32]

      (32) Turek, A. M.; Wachs, I. E.; Decanio, E. J. Phys. Chem. 1992,96, 5000. doi: 10.1021/j100191a050

    33. [33]

      (33) Lavalley, J. C.; Travert, J.; Chevreau, T.; Lamotte, J.; Saur, O. J.Chem. Sci. Chem. Commun. 1979, 146.

    34. [34]

      (34) Morterra, C.; Zecchina, A.; Coluccia, S.; Chiorino, A. J. Chem. Soc. Faraday Trans I. 1977, 73, 1544. doi: 10.1039/f19777301544

    35. [35]

      (35) Molina, R.; Centeno, M. A.; Poncelet, G. J. Phys. Chem. B1999, 103, 6036.

    36. [36]

      (36) The Sadtler Handbook of Infrared Spectra. Bio-RadLaboratories, Inc., Informatics Divison: Htercules, California,USA, 1978-2004.

    37. [37]

      (37) Finlayson-Pitts, B. J.; Wingen, L. M.; Sumber, A. L.; Syomin,D.; Ramazan, K. A. Phys. Chem. Chem. Phys. 2003, 5, 223. doi: 10.1039/b208564j

    38. [38]

      (38) Xu, B. Y.; Zhu, T.; Tang, X. Y.; Ding, J.; Li, H. J. Chem. J. Chin. Univ. 2006, 27, 1912. [徐冰烨,朱彤,唐孝炎,丁杰,李宏军.高等学校化学学报, 2006, 27, 1912.]

    39. [39]

      (39) Borensen, C.; Kirchner, U.; Scheer, V.; Vogt, R.; Zellner, R.J. Phys. Chem. A 2000, 104, 5036. doi: 10.1021/jp994170d

    40. [40]

      (40) Li, Q. X.; Hou, S. Z.; Xing, Y. Z.; Wei, H. W.; Li, M. China Surfactant Detergent & Consmetics 2000, 30, 50. [李秋小,侯素珍, 邢英站, 魏海威,李明. 日用化学工业, 2000, 30,50.]

    41. [41]

      (41) Rhodes, C.; Riddel, S. A.; West, J.;Williams, B. P.; Hutchings,G. J. Catal. Today 2000, 59, 443. doi: 10.1016/S0920-5861(00)00309-6

    42. [42]

      (42) Simmons, G. W.; Beard, B. C. J. Phys. Chem. 1987, 91, 1143.doi: 10.1021/j100289a025


  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    11. [11]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(517)
  • Abstract views(713)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return