Citation: SONG Hui, XU Xian-Zhi, LI Fen. Numerical Simulation of Discharge Process and Failure Mechanisms of Zinc Electrode[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1961-1974. doi: 10.3866/PKU.WHXB201306144
-
Zinc-air battery is a high-power electrochemical system. Experimental data indicate that material usage decreases significantly with increasing applied current density. A one-dimensional mathematical model was established to simulate the discharge process of a high-power zinc electrode working under high current density conditions. Variable distributions within the electrode such as ionic concentrations, transfer current density, electrode porosity, and volume fraction of solid zinc oxide were predicted based on numerical solutions. The results demonstrate that the limitation of the mass transfer process by precipitation of solid zinc oxide is the main factor causing electrode failure. The precipitation time of solid zinc oxide and its concentrated distribution area have significant impacts on the electrode performance. The limitation of the mass transfer process is greatly aggravated if the volume fraction of zinc oxide exceeds specific values within a small range, approximately 30%-35%. The optimal designs of zinc electrodes were discussed. The numerical results indicate that high-power electrodes with higher ionic conductivities and porosities behave better. However, the most important requirement is to maintain a relatively high concentration of hydroxyl ions. For enclosed electrodes, infusion is an effective method, whereas an ideal design would consist of an open system with a circulating electrolyte, such as fluidized bed electrolyte.
-
-
[1]
(1) Brodd, R. J.; Bullock, K. R.; Leising, R. A.; Middaugh, R. L.;Miller, J. R.; Takeuchi, E. Journal of the Electrochemical Society 2004, 151, K1.
-
[2]
(2) Sapkota, P.; Kim, H. Journal of Industrial and Engineering Chemistry 2009, 15, 445. doi: 10.1016/j.jiec.2009.01.002
-
[3]
(3) ldstein, J. R.; Gektin, I.; Koretz, B. Electric Fuel TM Zinc-Air Battery Regeneration Technology; In The 1995 Annual Meetin f the Applied Electrochemistry Division of the GermanChemical Society, Duisburg, Germany, Sept 27-29, 1995.
-
[4]
(4) Ou, X. Q.; Liang, G. C. Battery Bimonthly 2006, 36, 274. [欧秀芹,梁广川. 电池, 2006, 36, 274.]
-
[5]
(5) Li, F.; Xu, X. Z.; Song, H.; Xiong, J.; Wu, F. Acta Phys. -Chim. Sin. 2009, 25 (11), 2205. [李芬,徐献芝,宋辉,熊晋,吴飞.物理化学学报, 2009, 25 (11), 2205.] doi: 10.3866/PKU.WHXB20091119
-
[6]
(6) Li, S. Z.; Sun, L.; Hu, R. G.; Wang, Z. L.; Zhang, X. G.; Lin, C.J. Acta Phys. -Chim. Sin. 2009, 25 (8), 1635. [李思振,孙岚,胡融刚, 王志林,章小鸽, 林昌健.物理化学学报, 2009, 25 (8),1635.] doi: 10.3866/PKU.WHXB20090804
-
[7]
(7) Choi, K. W.; Bennion, D. N.; Newman, J. Journal of the Electrochemical Society 1976, 123, 1616. doi: 10.1149/1.2132657
-
[8]
(8) Sunu, W. G. Transient and Failure Analyses of Porous Zinc Electrodes; University of California: Los Angeles, 1978.
-
[9]
(9) Sunu, W. G.; Bennion, D. N. Journal of the Electrochemical Society 1980, 127, 2007. doi: 10.1149/1.2130054
-
[10]
(10) Isaacson, M. J.; McLarnon, F. R.; Cairns, E. J. Journal of the Electrochemical Society 1990, 137, 2014. doi: 10.1149/1.2086856
-
[11]
(11) Podlaha, E. J.; Cheh, H. Y. Journal of the Electrochemical Society 1994, 141, 15.
-
[12]
(12) Mao, Z. Journal of the Electrochemical Society 1992, 139,1105. doi: 10.1149/1.2069348
-
[13]
(13) Venkatraman, M.; Vanzee, J. Journal of Power Sources 2007,166, 537. doi: 10.1016/j.jpowsour.2006.12.064
-
[14]
(14) Torabi, F.; Aliakbar, A. Journal of the Electrochemical Society2012, 159, A1986.
-
[15]
(15) Zhang, X. G. Corrosion and Electrochemistry; MetallurgicalIndustry Press: Beijing, 2008; pp 491, 463, 464. [章小鸽. 锌的腐蚀与电化学. 北京: 冶金工业出版社, 2008: 491, 463, 464.]
-
[16]
(16) Sunu, W. G.; Bennion, D. N. Journal of the Electrochemical Society 1980, 127, 2007. doi: 10.1149/1.2130054
-
[17]
(17) Bockris, J. O.; Nagy, Z.; Damjanovic, A. Journal of the Electrochemical Society 1972, 119, 285. doi: 10.1149/1.2404188
-
[18]
(18) Butler, J. N. Ionic Equilibrium: A Mathematical Approach, 10thed.; Addison-Wesley: Reading, MA, 1964.
-
[19]
(19) Boden, D. P.; Wylie, R. B.; Spera, V. J. Journal of the Electrochemical Society 1971, 118, 1298. doi: 10.1149/1.2408309
-
[20]
(20) Kong, X. Y. Advanced Mechanics of Fluids in Porous Media;University of Science and Technology of China Press: Hefei,1999. [孔祥言. 高等渗流力学. 合肥: 中国科学技术大学出版社, 1999.]
-
[21]
(21) Kriegsmann, J. Journal of Power Sources 1999, 84, 52.
-
[22]
(22) Kordesch, K. V. In Batteries, Manganese Dioxide; MarcelDekker: NewYork, 1974; p 348.
-
[23]
(23) Newman, J.; Thomas-Alyea, K. E. Electrochemical Systems;Wiley: Hoboken, New Jersey, 2012; p 303.
-
[24]
(24) Um, S.; Wang, C.; Chen, K. S. Engineering Sciences 2000, 147,4485.
-
[25]
(25) Wang, C. Journal of Power Sources 2002, 110, 364. doi: 10.1016/S0378-7753(02)00199-4
-
[26]
(26) Tao, W. Q. Nemerical Heat Transfer, 2nd ed.; Xi'an JiaotongUniversity: Xi'an, 2001. [陶文铨.数值传热学.第二版.西安:西安交通大学出版社, 2001.]
-
[27]
(27) Versteeg, H. K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method;Pearson Education Limited: New Jersey, 2007.
-
[28]
(28) Moré, J. J.; Garbow, B. S.; Hillstrom, K. E. User Guide for MINPACK-1, CM-P00068642, 1980.
-
[29]
(29) Powers, R. W.; Breiter, M. W. Journal of the Electrochemical Society 1969, 116, 719. doi: 10.1149/1.2412040
-
[30]
(30) Powers, R. W. Journal of the Electrochemical Society 1971, 118,685. doi: 10.1149/1.2408145
-
[31]
(31) Powers, R. W. Journal of the Electrochemical Society 1969, 116,1652. doi: 10.1149/1.2411652
-
[32]
(32) Liu, M.; Cook, G. M.; Yao, N. P. Journal of the Electrochemical Society 1981, 128, 1663. doi: 10.1149/1.2127707
-
[33]
(33) Cabot, P. L.; Cortes, M.; Centellas, F.; Perez, E. Journal of Applied Electrochemistry 1993, 23, 371. doi: 10.1007/BF00296694
-
[34]
(34) Cabot, P. L.; Cortes, M.; Centellas, F. A.; Garrido, J. A.; Perez,E. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 201, 85. doi: 10.1016/0022-0728(86)90089-6
-
[35]
(35) Colborn, J. A.;Wright, K. A.; Gulino, R. Method and Apparatusfor Refueling an Electrochemical Power Source. US Patent5952117, 1999.
-
[1]
-
-
[1]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[2]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[3]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[4]
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
-
[5]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[6]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[7]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[8]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[9]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[10]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[11]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[12]
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
-
[13]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[14]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[15]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[16]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[17]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[18]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[19]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[20]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[1]
Metrics
- PDF Downloads(538)
- Abstract views(612)
- HTML views(23)