Citation: SONG Hui, XU Xian-Zhi, LI Fen. Numerical Simulation of Discharge Process and Failure Mechanisms of Zinc Electrode[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1961-1974. doi: 10.3866/PKU.WHXB201306144 shu

Numerical Simulation of Discharge Process and Failure Mechanisms of Zinc Electrode

  • Received Date: 2 May 2013
    Available Online: 14 June 2013

    Fund Project: 国家自然科学基金(10872193)资助项目 (10872193)

  • Zinc-air battery is a high-power electrochemical system. Experimental data indicate that material usage decreases significantly with increasing applied current density. A one-dimensional mathematical model was established to simulate the discharge process of a high-power zinc electrode working under high current density conditions. Variable distributions within the electrode such as ionic concentrations, transfer current density, electrode porosity, and volume fraction of solid zinc oxide were predicted based on numerical solutions. The results demonstrate that the limitation of the mass transfer process by precipitation of solid zinc oxide is the main factor causing electrode failure. The precipitation time of solid zinc oxide and its concentrated distribution area have significant impacts on the electrode performance. The limitation of the mass transfer process is greatly aggravated if the volume fraction of zinc oxide exceeds specific values within a small range, approximately 30%-35%. The optimal designs of zinc electrodes were discussed. The numerical results indicate that high-power electrodes with higher ionic conductivities and porosities behave better. However, the most important requirement is to maintain a relatively high concentration of hydroxyl ions. For enclosed electrodes, infusion is an effective method, whereas an ideal design would consist of an open system with a circulating electrolyte, such as fluidized bed electrolyte.

  • 加载中
    1. [1]

      (1) Brodd, R. J.; Bullock, K. R.; Leising, R. A.; Middaugh, R. L.;Miller, J. R.; Takeuchi, E. Journal of the Electrochemical Society 2004, 151, K1.

    2. [2]

      (2) Sapkota, P.; Kim, H. Journal of Industrial and Engineering Chemistry 2009, 15, 445. doi: 10.1016/j.jiec.2009.01.002

    3. [3]

      (3) ldstein, J. R.; Gektin, I.; Koretz, B. Electric Fuel TM Zinc-Air Battery Regeneration Technology; In The 1995 Annual Meetin f the Applied Electrochemistry Division of the GermanChemical Society, Duisburg, Germany, Sept 27-29, 1995.

    4. [4]

      (4) Ou, X. Q.; Liang, G. C. Battery Bimonthly 2006, 36, 274. [欧秀芹,梁广川. 电池, 2006, 36, 274.]

    5. [5]

      (5) Li, F.; Xu, X. Z.; Song, H.; Xiong, J.; Wu, F. Acta Phys. -Chim. Sin. 2009, 25 (11), 2205. [李芬,徐献芝,宋辉,熊晋,吴飞.物理化学学报, 2009, 25 (11), 2205.] doi: 10.3866/PKU.WHXB20091119

    6. [6]

      (6) Li, S. Z.; Sun, L.; Hu, R. G.; Wang, Z. L.; Zhang, X. G.; Lin, C.J. Acta Phys. -Chim. Sin. 2009, 25 (8), 1635. [李思振,孙岚,胡融刚, 王志林,章小鸽, 林昌健.物理化学学报, 2009, 25 (8),1635.] doi: 10.3866/PKU.WHXB20090804

    7. [7]

      (7) Choi, K. W.; Bennion, D. N.; Newman, J. Journal of the Electrochemical Society 1976, 123, 1616. doi: 10.1149/1.2132657

    8. [8]

      (8) Sunu, W. G. Transient and Failure Analyses of Porous Zinc Electrodes; University of California: Los Angeles, 1978.

    9. [9]

      (9) Sunu, W. G.; Bennion, D. N. Journal of the Electrochemical Society 1980, 127, 2007. doi: 10.1149/1.2130054

    10. [10]

      (10) Isaacson, M. J.; McLarnon, F. R.; Cairns, E. J. Journal of the Electrochemical Society 1990, 137, 2014. doi: 10.1149/1.2086856

    11. [11]

      (11) Podlaha, E. J.; Cheh, H. Y. Journal of the Electrochemical Society 1994, 141, 15.

    12. [12]

      (12) Mao, Z. Journal of the Electrochemical Society 1992, 139,1105. doi: 10.1149/1.2069348

    13. [13]

      (13) Venkatraman, M.; Vanzee, J. Journal of Power Sources 2007,166, 537. doi: 10.1016/j.jpowsour.2006.12.064

    14. [14]

      (14) Torabi, F.; Aliakbar, A. Journal of the Electrochemical Society2012, 159, A1986.

    15. [15]

      (15) Zhang, X. G. Corrosion and Electrochemistry; MetallurgicalIndustry Press: Beijing, 2008; pp 491, 463, 464. [章小鸽. 锌的腐蚀与电化学. 北京: 冶金工业出版社, 2008: 491, 463, 464.]

    16. [16]

      (16) Sunu, W. G.; Bennion, D. N. Journal of the Electrochemical Society 1980, 127, 2007. doi: 10.1149/1.2130054

    17. [17]

      (17) Bockris, J. O.; Nagy, Z.; Damjanovic, A. Journal of the Electrochemical Society 1972, 119, 285. doi: 10.1149/1.2404188

    18. [18]

      (18) Butler, J. N. Ionic Equilibrium: A Mathematical Approach, 10thed.; Addison-Wesley: Reading, MA, 1964.

    19. [19]

      (19) Boden, D. P.; Wylie, R. B.; Spera, V. J. Journal of the Electrochemical Society 1971, 118, 1298. doi: 10.1149/1.2408309

    20. [20]

      (20) Kong, X. Y. Advanced Mechanics of Fluids in Porous Media;University of Science and Technology of China Press: Hefei,1999. [孔祥言. 高等渗流力学. 合肥: 中国科学技术大学出版社, 1999.]

    21. [21]

      (21) Kriegsmann, J. Journal of Power Sources 1999, 84, 52.

    22. [22]

      (22) Kordesch, K. V. In Batteries, Manganese Dioxide; MarcelDekker: NewYork, 1974; p 348.

    23. [23]

      (23) Newman, J.; Thomas-Alyea, K. E. Electrochemical Systems;Wiley: Hoboken, New Jersey, 2012; p 303.

    24. [24]

      (24) Um, S.; Wang, C.; Chen, K. S. Engineering Sciences 2000, 147,4485.

    25. [25]

      (25) Wang, C. Journal of Power Sources 2002, 110, 364. doi: 10.1016/S0378-7753(02)00199-4

    26. [26]

      (26) Tao, W. Q. Nemerical Heat Transfer, 2nd ed.; Xi'an JiaotongUniversity: Xi'an, 2001. [陶文铨.数值传热学.第二版.西安:西安交通大学出版社, 2001.]

    27. [27]

      (27) Versteeg, H. K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method;Pearson Education Limited: New Jersey, 2007.

    28. [28]

      (28) Moré, J. J.; Garbow, B. S.; Hillstrom, K. E. User Guide for MINPACK-1, CM-P00068642, 1980.

    29. [29]

      (29) Powers, R. W.; Breiter, M. W. Journal of the Electrochemical Society 1969, 116, 719. doi: 10.1149/1.2412040

    30. [30]

      (30) Powers, R. W. Journal of the Electrochemical Society 1971, 118,685. doi: 10.1149/1.2408145

    31. [31]

      (31) Powers, R. W. Journal of the Electrochemical Society 1969, 116,1652. doi: 10.1149/1.2411652

    32. [32]

      (32) Liu, M.; Cook, G. M.; Yao, N. P. Journal of the Electrochemical Society 1981, 128, 1663. doi: 10.1149/1.2127707

    33. [33]

      (33) Cabot, P. L.; Cortes, M.; Centellas, F.; Perez, E. Journal of Applied Electrochemistry 1993, 23, 371. doi: 10.1007/BF00296694

    34. [34]

      (34) Cabot, P. L.; Cortes, M.; Centellas, F. A.; Garrido, J. A.; Perez,E. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 201, 85. doi: 10.1016/0022-0728(86)90089-6

    35. [35]

      (35) Colborn, J. A.;Wright, K. A.; Gulino, R. Method and Apparatusfor Refueling an Electrochemical Power Source. US Patent5952117, 1999.


  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    5. [5]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    17. [17]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(538)
  • Abstract views(612)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return