Citation: DAI Xian-Feng, ZHEN Ming-Fu, XU Pan, SHI Jing-Jing, MA Cheng-Yu, QIAO Jin-Li. Electrochemical Behavior of Pyridine-Doped Carbon-Supported Co-Phthalocyanine (Py-CoPc/C) for Oxygen Reduction Reaction and Its Application to Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1753-1761. doi: 10.3866/PKU.WHXB201306141 shu

Electrochemical Behavior of Pyridine-Doped Carbon-Supported Co-Phthalocyanine (Py-CoPc/C) for Oxygen Reduction Reaction and Its Application to Fuel Cell

  • Received Date: 1 April 2013
    Available Online: 14 June 2013

    Fund Project: 国家自然科学基金(21173039) (21173039) 高等学校博士学科点专项科研基金(20110075110001) (20110075110001)国家环境保护纺织工业污染防治工程技术中心(20110927)资助项目 (20110927)

  • Pyridine-doped, carbon-supported Co-phthalocyanine (Py-CoPc/C) nanoparticle catalysts were synthesized via a combined solvent-impregnation and milling procedure, using Co-phthalocyanine (CoPc) and pyridine (Py) as the catalyst precursors. The morphologies and compositions of the catalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activities and stabilities were evaluated by linear sweep voltammetry (LSV), using a rotating disk electrode technique, in terms of their oxygen reduction reaction (ORR) activity as a function of Py doping. The results show that Py doping can significantly improve the catalytic activity of CoPc/C toward the ORR, and the optimal Py doping level is around 20% (i.e., 20%Py-20%CoPc/C), for which an onset potential of 0.20 V (vs SHE) and a half-wave potential of -0.03 V were achieved in 0.1 mol·L-1 KOH electrolyte. Compared with 40%Py/C and the 40%CoPc/C catalyst, the half-wave potential on the 20%Py-20%CoPc/C catalyst for the ORR shifted positively by 160 mV and 15 mV, respectively. The number of electrons transferred for the ORR also increased from 1.96 to 2.38, indicating an enhancement in ORR selectivity. Scanning electron microscopy-EDX and XRD analysis revealed that the N mass fraction (w) and dispersion of CoPc on carbon are improved by Py doping, which improves adsorption of O2 molecules on the catalyst surfaces. XPS analysis clearly showed pyridinic-N and graphitic-N in the Py-CoPc/C catalysts. Both are believed to be coordinated to Co ions on the catalyst surfaces, and this might be responsible for the enhanced ORR activity. An H2/O2 fuel cell using membrance electrode assembly (MEA), fabricated with a 20%Py-20%CoPc/ C cathode catalyst, generated a peak power density of 21 mW·cm-1, which is 2.4 times that of CoPc/C under the same operating conditions.

  • 加载中
    1. [1]

      (1) Abdel, R. M. A.; Abdel, H. R. M.; Khalia, M.W. J. Power Sources 2004, 134, 160. doi: 10.1016/j.jpowsour.2004.02.034

    2. [2]

      (2) Tripkovic, A. V.; Popovic, K. D.; Grgur, B. N.; Blizanac, B.;Ross, P. N.; Markovic, N. M. Electrochim. Acta 2002, 47, 3707.doi: 10.1016/S0013-4686(02)00340-7

    3. [3]

      (3) Chen, R. R.; Li, H.; Chu, D.;Wang, G. F. J. Phys. Chem. C2009, 113, 20689. doi: 10.1021/jp906408y

    4. [4]

      (4) Lefèvre, M.; Dodelet, J. P. Electrochim. Acta 2003, 48, 2749.

    5. [5]

      (5) Baker, R.;Wilkinson, D. P.; Zhang, J. Electrochim. Acta 2008,53, 6906. doi: 10.1016/j.electacta.2008.01.055

    6. [6]

      (6) Li, Z. P.; Liu, B. H. J. Appl. Electrochem. 2012, 40, 475

    7. [7]

      (7) Yu, E. H.; Cheng, S.; Logan, B. F.; Scott, K. J. J. Appl. Electrochem. 2009, 39, 705. doi: 10.1007/s10800-008-9712-2

    8. [8]

      (8) Cote, R.; Lalande, G. T.; Bailey, L. D.; Guay, D.; Dodelet, J. P.J. Electrochem. Soc. 1998, 145, 2411. doi: 10.1149/1.1838651

    9. [9]

      (9) Lu, Y.; Reddy, R. G. Int. J. Hydrog. Energy 2008, 33, 3930. doi: 10.1016/j.ijhydene.2007.12.031

    10. [10]

      (10) Bambagioni, V.; Bianchini, C.; Filippi, J.; Lavacchi, A.;Oberhauser,W.; Marchionni, A. J. Power Sources 2011, 196,2519. doi: 10.1016/j.jpowsour.2010.11.030

    11. [11]

      (11) Chung, H. T.; Johnston, C. M.; Zelenay, P. Electrochemical Society Trans. 2009, 25, 485

    12. [12]

      (12) Faubert, G.; Cote, R.; Dodelet, J. P.; Lefevre, M.; Bertrand, P.Electrochim. Acta 1999, 44, 2589.

    13. [13]

      (13) Cote, R.; Lalande, G.; Faubert, G.; Guay, D.; Dodelet, J. P.;Denes, G. J. New Mater. Electrochem. Syst. 1988, 1, 7.

    14. [14]

      (14) Gupta, S.; Tryk, D.; Zecevic, S. K.; Aldred,W.; Guo, D.;Savinell, R. J. Appl. Electrochem. 1998, 28, 673. doi: 10.1023/A:1003288609411

    15. [15]

      (15) Bhugun, I.; Fred, C. Anson. J. Electroanal. Chem. 1997, 430,155.

    16. [16]

      (16) uerec, P.; Savy, M. Electrochim. Acta 1999, 44, 2653.

    17. [17]

      (17) Seeliger,W.; Hamnett, A. Electrochim. Acta 1992, 37, 763. doi: 10.1016/0013-4686(92)80083-X

    18. [18]

      (18) Tian, J. H.;Wang, F. B.; Shan, Z. Q.;Wang, R. J.; Zhang, J. Y.J. Appl. Electrochem. 2004, 34, 461. doi: 10.1023/B:JACH.0000021860.94340.02

    19. [19]

      (19) Cheng, H.; Yan,W.; Scott, K. Fuel Cells 2007, 7, 16.

    20. [20]

      (20) Nallathamibi, V.; Lee J.W.; Kumaraguru, S. P.;Wu, G.; Popov,B. N. J. Power Sources 2008, 183, 34. doi: 10.1016/j.jpowsour.2008.05.020

    21. [21]

      (21) Ozaki, J.; Kimura, N.; Anahara, T.; Oya, A. Carbon 2007, 45,1847. doi: 10.1016/j.carbon.2007.04.031

    22. [22]

      (22) Iwazaki, T.; Obinata, R.; Sugimoto,W.; Takasu, Y. Electrochem. Commun. 2009, 11, 376. doi: 10.1016/j.elecom.2008.11.045

    23. [23]

      (23) Iwazaki, T.; Yang, H.; Obinata, R.; Sugimoto,W.; Takasu, Y.J. Power Sources 2010, 195, 5840. doi: 10.1016/j.jpowsour.2009.12.135

    24. [24]

      (24) ng, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009,323, 760. doi: 10.1126/science.1168049

    25. [25]

      (25) Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009,324, 71. doi: 10.1126/science.1170051

    26. [26]

      (26) Collman, J. P.; Chien, A. S.; Eberspacher, T. A.; Zhong, M.;Brauman, J. I. Inorg. Chem. 2000, 39, 4625. doi: 10.1021/ic000071z

    27. [27]

      (27) Qiao, J. L.; Xu, L.; Ding, L.; Zhang, L.; Baker, R.; Dai, X. F.;Zhang, J. J. Appl. Catal. B 2012, 125, 197. doi: 10.1016/j.apcatb.2012.05.050

    28. [28]

      (28) Velázquez-Palenzuela, A.; Zhang, L.;Wang, L. C.; Cabo, P. L.;Brillas, E.; Tsaya, K.; Zhang, J. J. Electrochim. Acta 2011, 56,4744. doi: 10.1016/j.electacta.2011.03.059

    29. [29]

      (29) Ding, L.; Qiao, J. L.; Dai, X. F.; Zhang, J. J.; Tian, B. L. Int. J. Hydrog. Energy 2012, 37, 14103. doi: 10.1016/j.ijhydene.2012.07.046

    30. [30]

      (30) Xu, Z.W.; Li, H. J.; Cao, G. X.; Zhang, Q. L.; Li, K. Z.; Zhao,X. N. J. Mol. Catal. A -Chem. 2011, 335, 89. doi: 10.1016/j.molcata.2010.11.018

    31. [31]

      (31) Iamamoto, Y.; Assis, M. D.; Ciuffi, K. J.; Sacco, H. C.;Iwamoto, L.; Melo, A. J. B.; Nascimento, O. R.; Prado, M. C. J. Mol. Catal. A -Chem. 1996, 109, 189. doi: 10.1016/1381-1169(96)00030-1

    32. [32]

      (32) Baranton, S.; Coutanceau, C.; Roux, C.; Hahn, F.; Leger, J. M.J. Electroanal. Chem. 2005, 577, 223.

    33. [33]

      (33) Lima, F. H. B.; Giz, M. J.; Ticianelli, E. A. J. Braz. Chem. Soc.2005, 16, 328.

    34. [34]

      (34) Giacomini, M. T.; Ticianelli, E. A.; McBreen, J.;Balasubramanianb, M. J. Electrochem. Soc. 2001, 148, A323.

    35. [35]

      (35) Markovic, N. M.; Schmidt, T. J.; Stamenkovic, V.; Ross, P. N.Fuel Cells 2001, 1, 105.

    36. [36]

      (36) Bard, A. J.; Faulkner, L. Electrochemical Methods, Wiley &Sons: New York, 2001, p 331.

    37. [37]

      (37) Lu, Y. H.; Ramana, G. R. Electrochim. Acta 2007, 52, 2562.

    38. [38]

      (38) Li, X.; Liu, G.; Popov, B. N. J. Power Sources 2010, 195, 6373.

    39. [39]

      (39) Lee, K.; Zhang, L.; Lui, H. Electrochim. Acta 2009, 54, 4704.

    40. [40]

      (40) Velázquez-Palenzuela, A.; Zhang, L.;Wang, L. J. Phys. Chem. C 2011, 115, 12929.

    41. [41]

      (41) Liu, G.; Li, X.; Ganesan, P. Electrochim. Acta 2010, 55, 2853.


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    7. [7]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(879)
  • Abstract views(969)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return