Citation: WANG Shun-Kui, LI Zhi-Jie, XIAO Xue-Zhang, FAN Xiu-Lin, CHEN Zhi-Wen, LI Shou-Quan, GE Hong-Wei, CHEN Li-Xin. Influence of KH on Reversible Dehydriding Performance of Na-Al-H Complex Hydride[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1804-1808. doi: 10.3866/PKU.WHXB201306061
-
The Na-Al-H complex hydride was prepared by reactive ball milling (NaH/Al+CeCl3) and (NaH/Al+CeCl3/yKH) (y=0.02, 0.04) composites under a hydrogen pressure of 3 MPa at room temperature, using NaH and Al powder as raw materials, as well as 2% (molar fraction) CeCl3 and 2% CeCl3/y% KH (y=0.02, 0.04) as dopant, respectively. The de-/hydrogenation properties show that the addition of KH can effectively improve the dehydrogenation kinetics of second decomposition step for Na-Al-H system. The (NaH/Al+CeCl3/0.02KH) composite can complete dehydrogenation process within 20 min at 170℃, with od de-/hydrogenation cycling performance at relatively low temperature (100-140℃). Calculation by Kissenger method shows that the addition of KH could decrease the apparent activation energy of second decomposition step for Na-Al-H system, resulting in the decrease of desorption peak temperatures. Phase structure analysis shows that the enhanced second step dehydrogenation kinetics of Na-Al-H composite system is mainly ascribed to the lattice volume expansion of Na3AlH6 resulted from the addition of KH.
-
Keywords:
-
Complex hydride
, - NaAlH4,
- KH,
- CeCl3,
- Dehydrogenation kinetics
-
-
-
[1]
(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634
-
[2]
(2) Bogdanovi?, B.; Schwickardi, M. Journal of Alloys and Compounds 1997, 253, 1.
-
[3]
(3) Bogdanovi?, B.; Eberle, U.; Felderhoff, M.; Schüth, F. Scripta Materialia 2007, 56, 813. doi: 10.1016/j.scriptamat.2007.01.004
-
[4]
(4) Xiao, X.; Chen, L.;Wang, X.; Li, S.;Wang, Q.; Chen, C.International Journal of Hydrogen Energy 2007, 32, 3954. doi: 10.1016/j.ijhydene.2007.05.015
-
[5]
(5) Xiao, X.; Chen, L.;Wang, X.;Wang, Q.; Chen, C. International Journal of Hydrogen Energy 2007, 32, 2475. doi: 10.1016/j.ijhydene.2006.11.002
-
[6]
(6) Xiao, X.; Chen, L.;Wang, X.; Li, S.; Chen, C.;Wang, Q.International Journal of Hydrogen Energy 2008, 33, 64. doi: 10.1016/j.ijhydene.2007.09.015
-
[7]
(7) Fan, X.; Xiao, X.; Chen, L.; Yu, K.;Wu, Z.; Li, S.;Wang, Q.Chemical Communications 2009, 6857.
-
[8]
(8) Xiao, X. Z.; Fan, X. L.; Yu, K. R.; Li, S. Q.; Chen, C. P.;Wang,Q. D.; Chen, L. X. J. Phys. Chem. C 2009, 113, 20745. doi: 10.1021/jp907258p
-
[9]
(9) Wang, P.; Jensen, C. M. J. Phys. Chem. B 2004, 108, 15827. doi: 10.1021/jp047002g
-
[10]
(10) Wang, P.; Kang, X. D.; Cheng, H. M. Journal of Applied Physics 2005, 98, 074905. doi: 10.1063/1.2084308
-
[11]
(11) Xiao, X. Z.; Chen, L. X.; Fan, X. L.; Ge, H.W.; Li, S. Q.; Ying,Y.;Wang, X. H.; Chen, C. P. Acta Phys. -Chim. Sin. 2008, 24,423. [肖学章, 陈立新, 范修林, 葛红卫, 李寿权, 应窕, 王新华, 陈长聘. 物理化学学报, 2008, 24, 423.] doi: 10.3866/PKU.WHXB20080312
-
[12]
(12) Liu, Y.; Liang, C.; Zhou, H.; Gao, M.; Pan, H.;Wang, Q.Chemical Communications 2011, 47, 1740. doi: 10.1039/c0cc03264f
-
[13]
(13) Bogdanovi?, B.; Felderhoff, M.; Pommerin, A.; Schueth, F.;Spielkamp, N. Advanced Materials 2006, 18, 1198.
-
[14]
(14) Hu, J.; Ren, S.;Witter, R.; Fichtner, M. Advanced Energy Materials 2012, 2, 560. doi: 10.1002/aenm.201100724
-
[15]
(15) Kissinger, H. E. Anal. Chem. 1957, 29, 1702. doi: 10.1021/ac60131a045
-
[16]
(16) Fan, X.; Xiao, X.; Chen, L.; Han, L.; Li, S.; Ge, H.;Wang, Q.International Journal of Hydrogen Energy 2011, 36, 10861. doi: 10.1016/j.ijhydene.2011.05.140
-
[17]
(17) Fan, X.; Xiao, X.; Chen, L.; Li, S.; Ge, H.;Wang, Q. J. Phys. Chem. C 2011, 115, 2537. doi: 10.1021/jp1089382
-
[18]
(18) Chung, S. C.; Morioka, H. Journal of Alloys and Compounds2004, 372, 92. doi: 10.1016/j.jallcom.2003.09.130
-
[1]
-
-
[1]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[3]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[4]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[5]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[6]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[7]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[11]
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
-
[12]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[13]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[14]
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
-
[15]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[16]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[17]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[18]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[19]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[20]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[1]
Metrics
- PDF Downloads(528)
- Abstract views(725)
- HTML views(28)