Citation: LV Ling-Ling, WANG Xiao-Fang, ZHU Yuan-Cheng, LIU Xin-Wen, YUAN Kun, WANG Yong-Cheng. Spin-Orbit Coupling and Zero-Field Splitting in Dioxygen Activation by Non-Heme Iron(III)[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1673-1680. doi: 10.3866/PKU.WHXB201306041 shu

Spin-Orbit Coupling and Zero-Field Splitting in Dioxygen Activation by Non-Heme Iron(III)

  • Received Date: 27 February 2013
    Available Online: 4 June 2013

    Fund Project: 国家自然科学基金(21263022) (21263022)

  • The mechanism of the O2 activation by the protocatechuate 3,4-dioxygenase was investigated using density functional calculations. In the initial complex, the ultrafast formation of the sextet 61 was probably the result of electron-exchange-induced intersystem crossing, and Fe dz:O2 π*(z) was the dominant exchange pathway, with an overlap of dz: O2π*(z) was dominant exchange pathway with the overlap of Sijdz α|π*(z) β>=0.3758 at an Fe―O bond length of 0.2487 nm. Two coexisting effects, electron spin exchange coupling and spin-orbit coupling (SOC) in the sextet 61, are responsible for formation of the quartet state 41 from the sextet 61. The exchange interaction competes with the SOC interaction as a driving force for spin conversion. The calculated results show that the latter is the dominant factor, because of the larger SOC constant (353.16 cm-1). In cleavage of the O― O bond, electron transfer from the protocatechuate (PCA) highest occupied molecular orbital (HOMO) plays a vital role. The Fe center of the non-heme enzyme is a buffer to transfer an electron pair from the PCA HOMO to O2.222

  • 加载中
    1. [1]

      (1) Pau, M. Y. M.; Davis, M. I.; Orville, A. M.; Lipscomb, J. D.;Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 1944. doi: 10.1021/ja065671x

    2. [2]

      (2) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem. Rev.2004, 104, 939. doi: 10.1021/cr020628n

    3. [3]

      (3) Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.;Lee, S. K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y. S.;Zhou, J. Chem. Rev. 2000, 100, 235. doi: 10.1021/cr9900275

    4. [4]

      (4) Nam,W. Accounts Chem. Res. 2007, 40, 522. doi: 10.1021/ar700027f

    5. [5]

      (5) Borowski, T.; Siegbahn, P. E. M. J. Am. Chem. Soc. 2006, 128,12941. doi: 10.1021/ja0641251

    6. [6]

      (6) Deeth, R. J.; Bugg, T. D. H. J. Biol. Inorg. Chem. 2003, 8, 409.

    7. [7]

      (7) Fiedler, A.; Schroder, D.; Shaik, S.; Schwarz. H. J. Am. Chem. Soc. 1994, 116, 10734. doi: 10.1021/ja00102a043

    8. [8]

      (8) Yoshizawa, K.; Shiota, Y.; Yamabe, T. J. Chem. Phys. 1999, 111,538. doi: 10.1063/1.479333

    9. [9]

      (9) Shaik, S.; Hirao, H.; Kumar, D. Accounts Chem. Res. 2007, 40,532. doi: 10.1021/ar600042c

    10. [10]

      (10) Schroder, D.; Shaik, S.; Schwarz, H. Accounts Chem. Res. 2000,33, 139. doi: 10.1021/ar990028j

    11. [11]

      (11) Neese, F. J. Am. Chem. Soc. 2006, 128, 10213. doi: 10.1021/ja061798a

    12. [12]

      (12) Neese, F. ORCA, version 2.8-20; Max-Planck Institute forBioinorganic Chemistry: Mülheim an der Ruhr, Germany, 2010.

    13. [13]

      (13) Fedorov, D. G.; Koseki, S.; Schmidt, M.W.; rdon, M. S. Int. Rev. Phys. Chem. 2003, 22, 551.

    14. [14]

      (14) Elgren, T. E.; Orville, A. M.; Kelly, K. A.; Lipscomb, J. D.;Ohlendorf, D. H.; Que, L., Jr. Biochemistry 1997, 36,11504. doi: 10.1021/bi970691k

    15. [15]

      (15) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision E.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    16. [16]

      (16) Hess, B. A.; Marian, C. M.;Wahlgren, U.; Gropen, O. Chem. Phys. Lett. 1996, 251, 365. doi: 10.1016/0009-2614(96)00119-4

    17. [17]

      (17) Rodriguez, J. H.; McCusker, J. K. J. Chem. Phys. 2002, 116,6253. doi: 10.1063/1.1461363

    18. [18]

      (18) Rodriguez, J. H.; Wheeler, D. E.; McCusker, J. K. J. Am. Chem. Soc. 1998, 120, 12051. doi: 10.1021/ja980917m

    19. [19]

      (19) Schmidtm, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.;Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.;Mot mery, J. A. J. Comput. Chem. 1993, 14, 1347.

    20. [20]

      (20) Giacobbe, E. M.; Mi, Q.; Colvin, M. T.; Cohen, B.; Ramanan,C.; Scott, A. M.; Yeganeh, S.; Marks, T. J.; Ratner, M. A.;Wasielewski, M. R. J. Am. Chem. Soc. 2009, 131, 3700. doi: 10.1021/ja808924f

    21. [21]

      (21) Isobe, H.; Yamanaka, S.; Kuramitsu, S.; Yamaguchi, K. J. Am. Chem. Soc. 2008, 130, 132. doi: 10.1021/ja073834r

    22. [22]

      (22) Dede, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Baik, M. H.J. Am. Chem. Soc. 2009, 122, 114.

    23. [23]

      (23) Lv, L. L.;Wang, Y. C.;Wang, Q.; Liu, H.W. J. Phys. Chem. C2010, 114, 17610.

    24. [24]

      (24) Lü, L. L.;Wang, Y. C. Acta. Phys. -Chim. Sin. 2006, 22, 265.[吕玲玲, 王永成. 物理化学学报, 2006, 22, 265.] doi: 10.3866/PKU.WHXB20060302

    25. [25]

      (25) Lü, L. L.; Zhu, Y. C.;Wang, X. F.; Zuo, G. F.; Zhao, S. R.; Guo,F.;Wang, Y. C. Chin. Sci. Bull. 2013, 58, 627. [吕玲玲, 朱元成, 王小芳, 左国防, 赵素瑞, 郭峰, 王永成. 科学通报, 2013,58, 627.] doi: 10.1007/s11434-012-5316-7


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    16. [16]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    17. [17]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    18. [18]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(578)
  • Abstract views(836)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return