Citation: LIU Tian-Qing, SUN Wei, LI Xiang-Qin, SUN Xiang-Yu, AI Hong-Ru. Growth Modes of Condensates on Nanotextured Surfaces and Mechanism of Partially Wetted Droplet Formation[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1762-1770. doi: 10.3866/PKU.WHXB201306033
-
The energy increasing rate (EIR) of a condensed droplet was analyzed during its growth in three different modes. The lowest EIR corresponding to one of the three ways was used as the criterion to determine the mode in which a condensed drop will increase its volume. The results show that the EIR according to the mode of increasing contact angle (CA) is much smaller than that according to the two other modes during the first period of growth of a condensate spot formed within a nanostructure. This means that the drop will grow, with CA increasing but the base area remaining constant, until a certain CA. After this, the EIR according to the mode of CA increasing becomes much higher than that according to the two other modes. The three-phase contact line of the drop starts to shift and the base area begins to increase while the CA remains constant. During this second period, the state of increased base area can be wetted; i.e., a Wenzel-state droplet forms with an apparent CA less than 160°. In contrast, the expanded base area can be in a composite state; i.e., a partially wetted droplet forms with a CA greater than 160° . The growth mode and its wetted state of a condensed droplet are strongly related to nanostructure. Partially wetted condensed drops can appear only on surfaces with nanopillars of a certain height and small pitch. The calculated results were consistent with experimental observations reported in the literature for the wetting states of condensed drops on nanotextured surfaces, with an accuracy of 91.9%, which is obviously higher than those calculated with reported formulas.
-
Keywords:
-
Super-hydrophobicity
, - Nano structure,
- Condensation,
- Drop,
- Growth mode,
- Wetted state,
- Mechanism,
- Model
-
-
-
[1]
(1) Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack,J.;Wang, E. N. Nano Lett. 2013, 13, 179. doi: 10.1021/nl303835d
-
[2]
(2) Rykaczewski, K.; Paxson, A. T.; Anand, S.; Chen, X.;Wang, Z.;Varanasi, K. K. Langmuir 2013, 29, 881. doi: 10.1021/la304264g
-
[3]
(3) Narhe, R. D.; Beysens, D. A. Europhys. Lett. 2006, 75, 98.doi: 10.1209/epl/i2006-10069-9
-
[4]
(4) Narhe, R. D.; Beysens, D. A. Langmuir 2007, 23, 6486.doi: 10.1021/la062021y
-
[5]
(5) Narhe, R. D.; Beysens, D. A. Phys. Rev. Lett. 2004, 93, 076103.doi: 10.1103/PhysRevLett.93.076103
-
[6]
(6) Wier, K. A.; McCarthy, T. J. Langmuir 2006, 22, 2433.doi: 10.1021/la0525877
-
[7]
(7) Jung, Y. C.; Bhushan, B. Journal of Microscopy 2008, 229, 127.doi: 10.1111/jmi.2008.229.issue-1
-
[8]
(8) Lafuma, A.; Quere, D. Nat. Mater. 2003, 2, 457. doi: 10.1038/nmat924
-
[9]
(9) Narhe, R. D.; nzalez-Vinas,W.; Beysens, D. A. Appl. Surf. Sci. 2010, 256, 4930. doi: 10.1016/j.apsusc.2010.03.004
-
[10]
(10) Chen, X. L.; Lu, T. Science in China Series G (Physics, Mechanics and Astronomy) 2009, 52, 233. doi: 10.1007/s11433-009-0041-1
-
[11]
(11) Xiao, X.; Cheng, Y. T.; Sheldon, B.W.; Rankin, J. J. Mater. Res.2008, 23, 2174. doi: 10.1557/JMR.2008.0260
-
[12]
(12) Furuta, T.; Sakai, M.; Isobe, T.; Nakajima, A. Langmuir 2010,26, 13305. doi: 10.1021/la101663a
-
[13]
(13) Dietz, C.; Rykaczewski, K.; Fedorov, A.; Joshi, Y. J. Heat Transfer 2010, 132, 080904. doi: 10.1115/1.4001752
-
[14]
(14) Kulinich, S. A.; Farhadi, S.; Nose, K.; Du, X.W. Langmuir2011, 27, 25. doi: 10.1021/la104277q
-
[15]
(15) Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.;Amaratunga, G. A. J.; Milne,W. I.; Mckinley, G. H.; Gleason,K. K. Nano Lett. 2003, 3, 1701. doi: 10.1021/nl034704t
-
[16]
(16) Dorrer, C.; Ruehe, J. Adv. Mater. 2008, 20, 159.
-
[17]
(17) Chen, C. H.; Cai, Q. J.; Tsai, C. L.; Chen, C. L.; Xiong, G. Y.;Yu, Y.; Ren, Z. F. Appl. Phys. Lett. 2007, 90, 173108.doi: 10.1063/1.2731434
-
[18]
(18) Boreyko, J. B.; Chen, C. H. Phys. Rev. Lett. 2009, 103, 184501.doi: 10.1103/PhysRevLett.103.184501
-
[19]
(19) Boreyko, J. B.; Chen, C. H. Phys. Fluids 2010, 22, 091110.doi: 10.1063/1.3483222
-
[20]
(20) Chen, X. M.;Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S.H.;Wang, Z. K. Adv. Funct. Mater. 2011, 21, 4617. doi: 10.1002/adfm.v21.24
-
[21]
(21) Dietz, C.; Rykaczewski, K.; Fedorov, A. G.; Joshi, Y. Appl. Phys. Lett. 2010, 97, 033104. doi: 10.1063/1.3460275
-
[22]
(22) Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang,W.; Deng, T. Appl. Phys. Lett. 2009, 95, 094101. doi: 10.1063/1.3200951
-
[23]
(23) Huang, L. Y.; Liu, Z. L.; Liu, Y. M.; u, Y. J. Int. J. Therm. Sci. 2011, 50, 432. doi: 10.1016/j.ijthermalsci.2010.11.011
-
[24]
(24) He, M.;Wang, J. J.; Li, H. L.; Song, Y. L. Soft Matter 2011, 7,3993. doi: 10.1039/c0sm01504k
-
[25]
(25) He, M.; Zhou, X.; Zeng, X. P.; Cui, D. P.; Zhang, Q. L.; Chen,J.; Li, H. L.;Wang, J. J.; Cao, Z. X.; Song, Y. L.; Jiang, L. Soft Matter 2012, 8, 6680. doi: 10.1039/c2sm25828e
-
[26]
(26) Feng, J.; Qin, Z. Q.; Yao, S. H. Langmuir 2012, 28, 6067.doi: 10.1021/la300609f
-
[27]
(27) Miljkovic, N.; Enright, R.;Wang, E. N. ACS Nano 2012, 6,1776. doi: 10.1021/nn205052a
-
[28]
(28) Enright, R.; Miljkovic, N.; Al-Obeidi, A.; Thompson, C. V.;Wang, E. N. Langmuir 2012, 28, 14424. doi: 10.1021/la302599n
-
[29]
(29) Ko, T. J.; Her, E. K.; Shin, B.; Kim, H. Y.; Lee, K. R.; Hong, B.K.; Kim, S. H.; Oh, K. H.; Moon, M.W. Carbon 2012, 50,5085. doi: 10.1016/j.carbon.2012.06.048
-
[30]
(30) Rykaczewski, K.; Osborn,W. A.; Chinn, J.;Walker, M. L.;Scott, J. H. J.; Jones,W.; Hao, C. L.; Yao, S. H.;Wang, Z. K.Soft Matter 2012, 8, 8786. doi: 10.1039/c2sm25502b
-
[31]
(31) Yu, T. S.; Park, J.; Lim, H.; Breuer, K. S. Langmuir 2012, 28,12771. doi: 10.1021/la301901m
-
[32]
(32) Zhang, Q. L.; He, M.; Zeng, X. P.; Li, K. Y.; Cui, D. P.; Chen, J.;Wang, J. J.; Song, Y. L.; Jiang, L. Soft Matter 2012, 8, 8285.doi: 10.1039/c2sm26206a
-
[33]
(33) Feng, J.; Pang, Y. C.; Qin, Z. Q.; Ma, R. Y.; Yao, S. H. ACS Appl. Mater. Interfaces 2012, 4, 6618. doi: 10.1021/am301767k
-
[34]
(34) Rykaczewski, K. Langmuir 2012, 28, 7720. doi: 10.1021/la301618h
-
[35]
(35) Rykaczewski, K.; Landin, T.;Walker, M. L.; Scott, J. H.;Varanasi, K. K. ACS Nano 2012, 6, 9326. doi: 10.1021/nn304250e
-
[36]
(36) Cheng, J. T.; Vandadi, A.; Chen, C. L. Appl. Phys. Lett. 2012,101, 131909. doi: 10.1063/1.4756800
-
[37]
(37) Anand, S.; Paxson, A. T.; Dhiman, R.; Smith, J. D.; Varanasi, K.K. ACS Nano 2012, 6, 10122. doi: 10.1021/nn303867y
-
[38]
(38) Shin, B. S.; Lee, K. R.; Moon, M.W.; Kim, H. Y. Soft Matter2012, 8, 1817. doi: 10.1039/c1sm06867a
-
[39]
(39) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Langmuir 2010, 26,14835. doi: 10.1021/la101845t
-
[40]
(40) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2010, 26, 2989. [刘天庆, 孙玮, 孙相彧, 艾宏儒.物理化学学报, 2010, 26, 2989.] doi: 10.3866/PKU.WHXB20101025
-
[41]
(41) Rykaczewski, K.; Scott, J. H. J. ACS Nano 2011, 5, 5962.doi: 10.1021/nn201738n
-
[42]
(42) Wang, F. C.; Yang, F. Q.; Zhao, Y. P. Appl. Phys. Lett. 2011, 98,053112. doi: 10.1063/1.3553782
-
[43]
(43) Harris, J.W.; Stocker, H. Handbook of Mathematics and Computational Science; Springer-Verlag: New York, 1998;p 107.
-
[44]
(44) Hsieh, C. T.;Wu, F. L.; Chen,W. Y. J. Phys. Chem. C 2009, 113,13683. doi: 10.1021/jp9036952
-
[45]
(45) Iliev, S. D. J. Colloid Interface Sci. 1997, 194, 287.doi: 10.1006/jcis.1997.5110
-
[46]
(46) Andrieu, C.; Sykes, C.; Brochard, F. Langmuir 1994, 10, 2077.doi: 10.1021/la00019a010
-
[47]
(47) Dorrer, C.; Ruehe, J. Langmuir 2007, 23, 3820. doi: 10.1021/la063130f
-
[48]
(48) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Colloid Surface A2012, 414, 366. doi: 10.1016/j.colsurfa.2012.08.063
-
[49]
(49) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2012, 28, 1206. [刘天庆, 孙玮, 孙相彧, 艾宏儒.物理化学学报, 2012, 28, 1206.] doi: 10.3866/PKU.WHXB201202293
-
[50]
(50) Torresin, D.; Tiwari, M. K.; Del Col, D.; Poulikakos, D.Langmuir 2013, 29, 840. doi: 10.1021/la304389s
-
[1]
-
-
[1]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[2]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[3]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[4]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[5]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[6]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[7]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
-
[8]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[9]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[10]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[11]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[12]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[13]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[14]
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
-
[15]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[16]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[17]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[18]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[19]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[20]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[1]
Metrics
- PDF Downloads(796)
- Abstract views(1128)
- HTML views(4)