Citation: LIU Tian-Qing, SUN Wei, LI Xiang-Qin, SUN Xiang-Yu, AI Hong-Ru. Growth Modes of Condensates on Nanotextured Surfaces and Mechanism of Partially Wetted Droplet Formation[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1762-1770. doi: 10.3866/PKU.WHXB201306033 shu

Growth Modes of Condensates on Nanotextured Surfaces and Mechanism of Partially Wetted Droplet Formation

  • Received Date: 23 April 2013
    Available Online: 3 June 2013

    Fund Project: 国家自然科学基金(50876015)资助项目 (50876015)

  • The energy increasing rate (EIR) of a condensed droplet was analyzed during its growth in three different modes. The lowest EIR corresponding to one of the three ways was used as the criterion to determine the mode in which a condensed drop will increase its volume. The results show that the EIR according to the mode of increasing contact angle (CA) is much smaller than that according to the two other modes during the first period of growth of a condensate spot formed within a nanostructure. This means that the drop will grow, with CA increasing but the base area remaining constant, until a certain CA. After this, the EIR according to the mode of CA increasing becomes much higher than that according to the two other modes. The three-phase contact line of the drop starts to shift and the base area begins to increase while the CA remains constant. During this second period, the state of increased base area can be wetted; i.e., a Wenzel-state droplet forms with an apparent CA less than 160°. In contrast, the expanded base area can be in a composite state; i.e., a partially wetted droplet forms with a CA greater than 160° . The growth mode and its wetted state of a condensed droplet are strongly related to nanostructure. Partially wetted condensed drops can appear only on surfaces with nanopillars of a certain height and small pitch. The calculated results were consistent with experimental observations reported in the literature for the wetting states of condensed drops on nanotextured surfaces, with an accuracy of 91.9%, which is obviously higher than those calculated with reported formulas.

  • 加载中
    1. [1]

      (1) Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack,J.;Wang, E. N. Nano Lett. 2013, 13, 179. doi: 10.1021/nl303835d

    2. [2]

      (2) Rykaczewski, K.; Paxson, A. T.; Anand, S.; Chen, X.;Wang, Z.;Varanasi, K. K. Langmuir 2013, 29, 881. doi: 10.1021/la304264g

    3. [3]

      (3) Narhe, R. D.; Beysens, D. A. Europhys. Lett. 2006, 75, 98.doi: 10.1209/epl/i2006-10069-9

    4. [4]

      (4) Narhe, R. D.; Beysens, D. A. Langmuir 2007, 23, 6486.doi: 10.1021/la062021y

    5. [5]

      (5) Narhe, R. D.; Beysens, D. A. Phys. Rev. Lett. 2004, 93, 076103.doi: 10.1103/PhysRevLett.93.076103

    6. [6]

      (6) Wier, K. A.; McCarthy, T. J. Langmuir 2006, 22, 2433.doi: 10.1021/la0525877

    7. [7]

      (7) Jung, Y. C.; Bhushan, B. Journal of Microscopy 2008, 229, 127.doi: 10.1111/jmi.2008.229.issue-1

    8. [8]

      (8) Lafuma, A.; Quere, D. Nat. Mater. 2003, 2, 457. doi: 10.1038/nmat924

    9. [9]

      (9) Narhe, R. D.; nzalez-Vinas,W.; Beysens, D. A. Appl. Surf. Sci. 2010, 256, 4930. doi: 10.1016/j.apsusc.2010.03.004

    10. [10]

      (10) Chen, X. L.; Lu, T. Science in China Series G (Physics, Mechanics and Astronomy) 2009, 52, 233. doi: 10.1007/s11433-009-0041-1

    11. [11]

      (11) Xiao, X.; Cheng, Y. T.; Sheldon, B.W.; Rankin, J. J. Mater. Res.2008, 23, 2174. doi: 10.1557/JMR.2008.0260

    12. [12]

      (12) Furuta, T.; Sakai, M.; Isobe, T.; Nakajima, A. Langmuir 2010,26, 13305. doi: 10.1021/la101663a

    13. [13]

      (13) Dietz, C.; Rykaczewski, K.; Fedorov, A.; Joshi, Y. J. Heat Transfer 2010, 132, 080904. doi: 10.1115/1.4001752

    14. [14]

      (14) Kulinich, S. A.; Farhadi, S.; Nose, K.; Du, X.W. Langmuir2011, 27, 25. doi: 10.1021/la104277q

    15. [15]

      (15) Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.;Amaratunga, G. A. J.; Milne,W. I.; Mckinley, G. H.; Gleason,K. K. Nano Lett. 2003, 3, 1701. doi: 10.1021/nl034704t

    16. [16]

      (16) Dorrer, C.; Ruehe, J. Adv. Mater. 2008, 20, 159.

    17. [17]

      (17) Chen, C. H.; Cai, Q. J.; Tsai, C. L.; Chen, C. L.; Xiong, G. Y.;Yu, Y.; Ren, Z. F. Appl. Phys. Lett. 2007, 90, 173108.doi: 10.1063/1.2731434

    18. [18]

      (18) Boreyko, J. B.; Chen, C. H. Phys. Rev. Lett. 2009, 103, 184501.doi: 10.1103/PhysRevLett.103.184501

    19. [19]

      (19) Boreyko, J. B.; Chen, C. H. Phys. Fluids 2010, 22, 091110.doi: 10.1063/1.3483222

    20. [20]

      (20) Chen, X. M.;Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S.H.;Wang, Z. K. Adv. Funct. Mater. 2011, 21, 4617. doi: 10.1002/adfm.v21.24

    21. [21]

      (21) Dietz, C.; Rykaczewski, K.; Fedorov, A. G.; Joshi, Y. Appl. Phys. Lett. 2010, 97, 033104. doi: 10.1063/1.3460275

    22. [22]

      (22) Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang,W.; Deng, T. Appl. Phys. Lett. 2009, 95, 094101. doi: 10.1063/1.3200951

    23. [23]

      (23) Huang, L. Y.; Liu, Z. L.; Liu, Y. M.; u, Y. J. Int. J. Therm. Sci. 2011, 50, 432. doi: 10.1016/j.ijthermalsci.2010.11.011

    24. [24]

      (24) He, M.;Wang, J. J.; Li, H. L.; Song, Y. L. Soft Matter 2011, 7,3993. doi: 10.1039/c0sm01504k

    25. [25]

      (25) He, M.; Zhou, X.; Zeng, X. P.; Cui, D. P.; Zhang, Q. L.; Chen,J.; Li, H. L.;Wang, J. J.; Cao, Z. X.; Song, Y. L.; Jiang, L. Soft Matter 2012, 8, 6680. doi: 10.1039/c2sm25828e

    26. [26]

      (26) Feng, J.; Qin, Z. Q.; Yao, S. H. Langmuir 2012, 28, 6067.doi: 10.1021/la300609f

    27. [27]

      (27) Miljkovic, N.; Enright, R.;Wang, E. N. ACS Nano 2012, 6,1776. doi: 10.1021/nn205052a

    28. [28]

      (28) Enright, R.; Miljkovic, N.; Al-Obeidi, A.; Thompson, C. V.;Wang, E. N. Langmuir 2012, 28, 14424. doi: 10.1021/la302599n

    29. [29]

      (29) Ko, T. J.; Her, E. K.; Shin, B.; Kim, H. Y.; Lee, K. R.; Hong, B.K.; Kim, S. H.; Oh, K. H.; Moon, M.W. Carbon 2012, 50,5085. doi: 10.1016/j.carbon.2012.06.048

    30. [30]

      (30) Rykaczewski, K.; Osborn,W. A.; Chinn, J.;Walker, M. L.;Scott, J. H. J.; Jones,W.; Hao, C. L.; Yao, S. H.;Wang, Z. K.Soft Matter 2012, 8, 8786. doi: 10.1039/c2sm25502b

    31. [31]

      (31) Yu, T. S.; Park, J.; Lim, H.; Breuer, K. S. Langmuir 2012, 28,12771. doi: 10.1021/la301901m

    32. [32]

      (32) Zhang, Q. L.; He, M.; Zeng, X. P.; Li, K. Y.; Cui, D. P.; Chen, J.;Wang, J. J.; Song, Y. L.; Jiang, L. Soft Matter 2012, 8, 8285.doi: 10.1039/c2sm26206a

    33. [33]

      (33) Feng, J.; Pang, Y. C.; Qin, Z. Q.; Ma, R. Y.; Yao, S. H. ACS Appl. Mater. Interfaces 2012, 4, 6618. doi: 10.1021/am301767k

    34. [34]

      (34) Rykaczewski, K. Langmuir 2012, 28, 7720. doi: 10.1021/la301618h

    35. [35]

      (35) Rykaczewski, K.; Landin, T.;Walker, M. L.; Scott, J. H.;Varanasi, K. K. ACS Nano 2012, 6, 9326. doi: 10.1021/nn304250e

    36. [36]

      (36) Cheng, J. T.; Vandadi, A.; Chen, C. L. Appl. Phys. Lett. 2012,101, 131909. doi: 10.1063/1.4756800

    37. [37]

      (37) Anand, S.; Paxson, A. T.; Dhiman, R.; Smith, J. D.; Varanasi, K.K. ACS Nano 2012, 6, 10122. doi: 10.1021/nn303867y

    38. [38]

      (38) Shin, B. S.; Lee, K. R.; Moon, M.W.; Kim, H. Y. Soft Matter2012, 8, 1817. doi: 10.1039/c1sm06867a

    39. [39]

      (39) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Langmuir 2010, 26,14835. doi: 10.1021/la101845t

    40. [40]

      (40) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2010, 26, 2989. [刘天庆, 孙玮, 孙相彧, 艾宏儒.物理化学学报, 2010, 26, 2989.] doi: 10.3866/PKU.WHXB20101025

    41. [41]

      (41) Rykaczewski, K.; Scott, J. H. J. ACS Nano 2011, 5, 5962.doi: 10.1021/nn201738n

    42. [42]

      (42) Wang, F. C.; Yang, F. Q.; Zhao, Y. P. Appl. Phys. Lett. 2011, 98,053112. doi: 10.1063/1.3553782

    43. [43]

      (43) Harris, J.W.; Stocker, H. Handbook of Mathematics and Computational Science; Springer-Verlag: New York, 1998;p 107.

    44. [44]

      (44) Hsieh, C. T.;Wu, F. L.; Chen,W. Y. J. Phys. Chem. C 2009, 113,13683. doi: 10.1021/jp9036952

    45. [45]

      (45) Iliev, S. D. J. Colloid Interface Sci. 1997, 194, 287.doi: 10.1006/jcis.1997.5110

    46. [46]

      (46) Andrieu, C.; Sykes, C.; Brochard, F. Langmuir 1994, 10, 2077.doi: 10.1021/la00019a010

    47. [47]

      (47) Dorrer, C.; Ruehe, J. Langmuir 2007, 23, 3820. doi: 10.1021/la063130f

    48. [48]

      (48) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Colloid Surface A2012, 414, 366. doi: 10.1016/j.colsurfa.2012.08.063

    49. [49]

      (49) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2012, 28, 1206. [刘天庆, 孙玮, 孙相彧, 艾宏儒.物理化学学报, 2012, 28, 1206.] doi: 10.3866/PKU.WHXB201202293

    50. [50]

      (50) Torresin, D.; Tiwari, M. K.; Del Col, D.; Poulikakos, D.Langmuir 2013, 29, 840. doi: 10.1021/la304389s


  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    3. [3]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    4. [4]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    15. [15]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    19. [19]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(796)
  • Abstract views(1128)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return