Citation: TAO Sha, YU Li-Juan, WU De-Yin, TIAN Zhong-Qun. Raman Spectra of Amino Wagging Vibrational Modes in p-π-Conjugated Molecules[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1609-1617. doi: 10.3866/PKU.WHXB201306032 shu

Raman Spectra of Amino Wagging Vibrational Modes in p-π-Conjugated Molecules

  • Received Date: 16 April 2013
    Available Online: 3 June 2013

    Fund Project: 国家自然科学基金(91027009, 21021002, 20973143) (91027009, 21021002, 20973143) 国家重点基础研究发展规划项目(973) (2009CB930703) (973) (2009CB930703)厦门大学(2010121020)资助 (2010121020)

  • Raman spectroscopy has been widely used as a non-destructive testing and molecular recognition technology, providing fingerprint information for chemical and biological molecular structures. One type of out-of-plane bending vibration observed in Raman spectroscopy is named the‘wagging vibration’. The Raman signal of the wagging mode is very sensitive; not only the vibrational frequency but also the Raman intensity depends strongly on environment factors. In this report, density functional theory (DFT) calculations are used to study the equilibrium structures, binding interactions, and Raman spectra of vinylamine and aniline as well as their complexes with silver clusters and water clusters. Vinylamine-silver and aniline-silver clusters were used to simulate the interactions of the molecules adsorbed on silver surfaces, while vinylamine-water and aniline-water clusters were used to investigate the hydrogen bonding interactions of vinylamine and aniline with water clusters. Our calculated results show that the Raman signal of the amino wagging mode strongly depends on the hydrogen bonding interaction of the nitrogen lone pair in the amino group with the O―H bond of water. Increasing the size of the water clusters causes a large blue shift and considerable enhancement in the intensity of the wagging vibration. When the polarized continuum model was used to consider the solvation effect, the electrostatic interaction contributing to the hydrogen bond was weakened. In this case, the simulated Raman spectra were similar to each other. For vinylamine and aniline interacting with silver clusters, the Raman signals of the amino wagging vibration were changed by the weak binding interaction, revealing the relationship between the abnormal signal of wagging vibrations and the weak interaction in p-π-conjugated systems.

  • 加载中
    1. [1]

      (1) Krueger, P. Canadian Journal of Chemistry 1963, 41, 363. doi: 10.1139/v63-053

    2. [2]

      (2) Xie, M., X.; Liu, Y. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2002, 58, 2817. doi: 10.1016/S1386-1425(02)00072-0

    3. [3]

      (3) Solca, N.; Dopfer, O. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 2002, 20, 469.

    4. [4]

      (4) Szatylowicz, H.; Kry wski, T. M.; Hobza, P. The Journal of Physical Chemistry A 2007, 111, 170. doi: 10.1021/jp065336v

    5. [5]

      (5) Wolff, H.; Mathias, D. The Journal of Physical Chemistry 1973,77, 2081. doi: 10.1021/j100636a010

    6. [6]

      (6) Nakanaga, T.; Ito, F.; Miyawaki, J.; Sugawara, K.; Takeo, H.Chemical Physics Letters 1996, 261, 414. doi: 10.1016/0009-2614(96)00994-3

    7. [7]

      (7) Nakanaga, T.; Kawamata, K.; Ito, F. Chemical Physics Letters1997, 279, 309. doi: 10.1016/S0009-2614(97)01059-2

    8. [8]

      (8) Nakanaga, T.; Sugawara, K.; Kawamata, K.; Ito, F. Chemical Physics Letters 1997, 267, 491. doi: 10.1016/S0009-2614(97)00127-9

    9. [9]

      (9) Schmid, R.; Chowdhury, P.; Miyawaki, J.; Ito, F.; Sugawara, K.;Nakanaga, T.; Takeo, H.; Jones, H. Chemical Physics 1997, 218,291. doi: 10.1016/S0301-0104(97)00072-4

    10. [10]

      (10) Fedotova, M. V.; Kruchinin, S. E. Journal of Molecular Liquids2013, 179, 27. doi: 10.1016/j.molliq.2012.11.031

    11. [11]

      (11) Plugatyr, A.; Svishchev, I. M. The Journal of Chemical Physics2009, 130, 114509. doi: 10.1063/1.3096672

    12. [12]

      (12) Li, D.W.; Qu, L. L.; Zhai,W. L.; Xue, J. Q.; Fossey, J. S.; Long,Y. T. Environmental Science & Technology 2011, 45, 4046. doi: 10.1021/es104155r

    13. [13]

      (13) Perry, D. A.; Cordova, J. S.; Schiefer, E. M.; Chen, T. Y.; Razer,T. M.; Biris, A. S. The Journal of Physical Chemistry C 2012,116, 4584. doi: 10.1021/jp208489w

    14. [14]

      (14) Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q.The Journal of Physical Chemistry C 2009, 113, 18212. doi: 10.1021/jp9050929

    15. [15]

      (15) Tian, Z. Q.; Lei, L. C.; Jing, X. B. Acta Phys. -Chim. Sin. 1988,4, 458. [田中群, 雷良才, 景遐斌. 物理化学学报, 1988, 4,458.] doi: 10.3866/PKU.WHXB19880504

    16. [16]

      (16) Park, H.; Lee, S. B.; Kim, K.; Kim, M. S. The Journal of Physical Chemistry 1990, 94, 7576.

    17. [17]

      (17) Park, S. H.; Kim, K.; Kim, M. S. Journal of Molecular Structure1993, 301, 57. doi: 10.1016/0022-2860(93)80231-J

    18. [18]

      (18) Zhao, L. B.; Huang, R.; Bai, M. X.;Wu, D. Y.; Tian, Z. Q. The Journal of Physical Chemistry C 2011, 115, 4174. doi: 10.1021/jp1117135

    19. [19]

      (19) Hamada, Y.; Sato, N.; Tsuboi, M. Journal of Molecular Spectroscopy 1987, 124, 172. doi: 10.1016/0022-2852(87)90130-5

    20. [20]

      (20) McNaughton, D.; Evans, C. J. Journal of Molecular Spectroscopy 1999, 196, 274. doi: 10.1006/jmsp.1999.7861

    21. [21]

      (21) Brown, R.; dfrey, P.; Kleibomer, B.; Pierlot, A.;McNaughton, D. Journal of Molecular Spectroscopy 1990, 142,195. doi: 10.1016/0022-2852(90)90177-R

    22. [22]

      (22) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. The Journal of Physical Chemistry B 2009, 113, 6378. doi: 10.1021/jp810292n

    23. [23]

      (23) Wu, D. Y.; Hayashi, M.; Shiu, Y. J.; Liang, K. K.; Chang, C. H.;Yeh, Y. L.; Lin, S. H. The Journal of Physical Chemistry A2003, 107, 9658. doi: 10.1021/jp034951l

    24. [24]

      (24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A. 01; Gaussian Inc.:Wallingford, CT, 2009.

    25. [25]

      (25) McLean, A.; Chandler, G. The Journal of Chemical Physics1980, 72, 5639. doi: 10.1063/1.438980

    26. [26]

      (26) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. The Journal of Chemical Physics 1980, 72, 650. doi: 10.1063/1.438955

    27. [27]

      (27) Wadt,W. R.; Hay, P. J. The Journal of Chemical Physics 1985,82, 284. doi: 10.1063/1.448800

    28. [28]

      (28) Hay, P. J.;Wadt,W. R. The Journal of Chemical Physics 1985,82, 299. doi: 10.1063/1.448975

    29. [29]

      (29) Schultz, G.; Portalone, G.; Ramondo, F.; Domenicano, A.;Hargittai, I. Structural Chemistry 1996, 7, 59. doi: 10.1007/BF02275450

    30. [30]

      (30) Boys, S.; Bernardi, F. Molecular Physics 1970, 19, 553. doi: 10.1080/00268977000101561

    31. [31]

      (31) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chemical Reviews1988, 88, 899. doi: 10.1021/cr00088a005

    32. [32]

      (32) Carpenter, J.;Weinhold, F. Journal of Molecular Structure: Theochem 1988, 169, 41. doi: 10.1016/0166-1280(88)80248-3

    33. [33]

      (33) Liang, X. J.; Cui, L.;Wu, D. Y.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2009, 25, 1605 [梁晓静, 崔丽, 吴德印, 田中群. 物理化学学报, 2009, 25, 1605.] doi: 10.3866/PKU.WHXB20090808

    34. [34]

      (34) Ziegler, L.; Hudson, B. The Journal of Physical Chemistry1984, 88, 1110. doi: 10.1021/j150650a016

    35. [35]

      (35) Tsuboi, M.; Hirakawa, A. Y.; Ino, T.; Sasaki, T.; Tamagake, K.The Journal of Chemical Physics 1964, 41, 2721. doi: 10.1063/1.1726344

    36. [36]

      (36) Evans, J. Spectrochimica Acta 1960, 16, 428. doi: 10.1016/0371-1951(60)80037-9

    37. [37]

      (37) Larsen, N.; Hansen, E.; Nicolaisen, F. Chemical Physics Letters1976, 43, 584. doi: 10.1016/0009-2614(76)80629-X

    38. [38]

      (38) Rauhut, G.; Pulay, P. The Journal of Physical Chemistry 1995,99, 3093. doi: 10.1021/j100010a019

    39. [39]

      (39) Shindo, H. J. Chem. Soc. Faraday Trans. 1 1986, 82, 45. doi: 10.1039/f19868200045

    40. [40]

      (40) Holze, R. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 250, 143. doi: 10.1016/0022-0728(88)80199-2

    41. [41]

      (41) Tripathi, G. The Journal of Chemical Physics 1980, 73, 5521.doi: 10.1063/1.440072

    42. [42]

      (42) Qi, Y.; Hu, Y.; Xie, M.; Xing, D.; Gu, H. Journal of Raman Spectroscopy 2011, 42, 1287. doi: 10.1002/jrs.v42.6

    43. [43]

      (43) Funnell, N. P.; Dawson, A.; Marshall,W. G.; Parsons, S.CrystEngComm 2013, 15, 1047.

    44. [44]

      (44) Wojciechowski, P. M.; Zierkiewicz,W.; Michalska, D.; Hobza,P. The Journal of Chemical Physics 2003, 118, 10900. doi: 10.1063/1.1574788

    45. [45]

      (45) Chrétien, S.; rdon, M. S.; Metiu, H. The Journal of Chemical Physics 2004, 121, 9925. doi: 10.1063/1.1809600

    46. [46]

      (46) Soto-Verdu , V.; Metiu, H.; Gwinn, E. The Journal of Chemical Physics 2010, 132, 195102. doi: 10.1063/1.3419930


  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

Metrics
  • PDF Downloads(928)
  • Abstract views(1362)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return