Citation: SUN Wei, ZHANG Jin-Jiang, ZHAO Jian-Wei. Molecular Dynamics Simulation of a Nanosized Device[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1931-1936. doi: 10.3866/PKU.WHXB201305311
-
Molecular dynamics (MD) simulations have been widely used for molecular systems; however, it is difficult to simulate nanosized devices because of limited computational capacity. Recently, we developed ultra-large MD simulation software, NanoMD. Here, we use this software to investigate a high speed rotatable nanodevice via the atomistic model of a nanogear. The stress distribution and failure mechanism of the nanodevice under high speed rotation is confirmed through dislocation defect analysis. The device strength is measured by focusing on the ultimate elastic rotation speed. There is an obvious size effect that limits the rotation speed of the nanodevice. The limiting speed increases with decreasing the diameter of the nanodevice. With shrinking the shaft diameter, it increases firstly, followed by a decrease.
-
-
[1]
(1) Deng, J.; Troadec, C.; Ample, F.; Joachim, C. Nanotechnology2011, 22, 275307. doi: 10.1088/0957-4484/22/27/275307
-
[2]
(2) Yun, Y. J.; Ah, C. S.; Kim, S.; Yun, W. S.; Park, B. C.; Ha, D. H.Nanotechnology 2007, 18, 505304. doi: 10.1088/0957-4484/18/50/505304
-
[3]
(3) Le as, S. B.; Coluci, V. R.; Braga, S. F.; Coura, P. Z.; Dantas,S. O.; Galvao, D. S. Phys. Rev. Lett. 2003, 90, 555045.
-
[4]
(4) Le as, S. B.; Coluci, V. R.; Braga, S. F.; Coura, P. Z.; Dantas,S.; Galvao, D. S. Nanotechnology 2004, 15, S184.
-
[5]
(5) Hwang, H. J.; Kang, J. W. Physica E 2005, 27, 163. doi: 10.1016/j.physe.2004.11.004
-
[6]
(6) Hwang, H. J.; Choi, W. Y.; Kang, J. W. Comput. Mater. Sci.2005, 33, 317. doi: 10.1016/j.commatsci.2004.12.068
-
[7]
(7) Zhang, Y. F.; Huang, H. C. Nanoscale Res. Lett. 2009, 4, 34.doi: 10.1007/s11671-008-9198-1
-
[8]
(8) Zhang, Y. F.; Huang, H. C. J. Appl. Phys. 2010, 108, 10350710.
-
[9]
(9) Deng, C.; Sansoz, F. ACS Nano 2009, 3, 3001. doi: 10.1021/nn900668p
-
[10]
(10) Deng, C.; Sansoz, F. Appl. Phys. Lett. 2009, 95, 919149.
-
[11]
(11) Deng, C.; Sansoz, F. Nano Lett. 2009, 9, 1517. doi: 10.1021/nl803553b
-
[12]
(12) Yang, P.; Liao, N. B.; Yang, D. G.; Ernst, L. J. Microsyst. Technol. 2006, 12, 1125. doi: 10.1007/s00542-006-0235-7
-
[13]
(13) Yang, P.; Zhang, H. Z. Tribol. Int. 2008, 41, 535. doi: 10.1016/j.triboint.2007.10.011
-
[14]
(14) Liu, Y. H.; Gao, Y. J.; Wang, F. Y.; Zhu, T. M.; Zhao, J. W. Acta Phys. -Chim. Sin. 2011, 27, 1341. [刘云红,高亚军, 王奋英,朱铁民,赵健伟. 物理化学学报, 2011, 27, 1341.] doi: 10.3866/PKU.WHXB20110605
-
[15]
(15) Wang, F. Y.; Gao, Y. J.; Zhu, T. M.; Zhao, J. W. Nanoscale Res. Lett. 2011, 6, 291. doi: 10.1186/1556-276X-6-291
-
[16]
(16) Gao, Y. J.; Wang, H. B.; Zhao, J. W.; Sun, C. Q.; Wang, F. Y.Comput. Mater. Sci. 2011, 50, 3032. doi: 10.1016/j.commatsci.2011.05.023
-
[17]
(17) Liu, Y. H.; Wang, F. Y.; Zhao, J. W.; Jiang, L. Y.; Kiguchi, M.;Murakoshi, K. Phys. Chem. Chem. Phys. 2009, 11, 6514. doi: 10.1039/b902795e
-
[18]
(18) Wang, F. Y.; Sun, W.; Gao, Y. J.; Liu, Y. H.; Zhao, J. W.; Sun, C.Q. Comput. Mater. Sci. 2013, 67, 182. doi: 10.1016/j.commatsci.2012.07.048
-
[19]
(19) Wang, F. Y.; Gao, Y. J.; Zhu, T. M.; Zhao, J. W. Nanoscale 2011,3, 1624. doi: 10.1039/c0nr00797h
-
[20]
(20) Verlet, L. Phys. Rev. 1967, 159, 98. doi: 10.1103/PhysRev.159.98
-
[21]
(21) Haile, J. M.; Gupta, S. J. Chem. Phys. 1983, 79, 3067. doi: 10.1063/1.446137
-
[22]
(22) Nose, S. Mol. Phys. 1984, 52, 255. doi: 10.1080/00268978400101201
-
[23]
(23) Hoover, W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695
-
[24]
(24) Johnson, R. A. Phys. Rev. B 1988, 37, 3924. doi: 10.1103/PhysRevB.37.3924
-
[25]
(25) Johnson, R. A. Phys. Rev. B 1988, 37, 6121. doi: 10.1103/PhysRevB.37.6121
-
[26]
(26) Liu, Y. H.; Zhao, J. W.; Wang, F. Y. Phys. Rev. B 2009, 80,11541711.
-
[27]
(27) Wang, D. X.; Zhao, J. W.; Hu, S.; Yin, X.; Liang, S.; Liu, Y. H.;Deng, S. Y. Nano Lett. 2007, 7, 1208. doi: 10.1021/nl0629512
-
[28]
(28) Wang, F. Y.; Sun, W.; Wang, H. B.; Zhao, J. W.; Kiguchi, M.;Sun, C. Q. J. Nanopart. Res. 2012, 14, 10829
-
[29]
(29) Zhao, J. W.; Murakoshi, K.; Yin, X.; Kiguchi, M.; Guo, Y.;Wang, N.; Liang, S.; Liu, H. J. Phys. Chem. C 2008, 112,20088. doi: 10.1021/jp8055448
-
[30]
(30) Zhou, L. Q. Coal Mine Machinery 2003, 3, 7. [周里群.煤矿机械, 2003, 3, 7.]
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[5]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[6]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[9]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[14]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[15]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[16]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[17]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[18]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[19]
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
-
[20]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[1]
Metrics
- PDF Downloads(573)
- Abstract views(886)
- HTML views(6)