Citation: MA Kai-Guo, FANG Tan, BAI Jin-Yi, GUO Hai-Qing. Effects of Derivatives of 3-Mercaptoisobutyric Acid on the Aqueous Synthesis of CdTe Quantum Dots[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1814-1818. doi: 10.3866/PKU.WHXB201305301 shu

Effects of Derivatives of 3-Mercaptoisobutyric Acid on the Aqueous Synthesis of CdTe Quantum Dots

  • Received Date: 4 February 2013
    Available Online: 30 May 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB933300)资助 (973) (2011CB933300)

  • Mercapto acids can affect the obtaining CdTe quantum dots (QDs) with narrow size distribution and high fluorescent quantum yield (QY) that emit in the red to near-infrared region. To study their effects on CdTe QDs, three types of derivatives of 3-mercaptoisobutyric acid (MIBA) were designed and synthesized: hydrophilic side-chain derivative N-acetylcysteine (ACys), hydrophobic side-chain derivatives 3-mercapto-2-methylbutyric acid (MMBA) and 3-mercapto-2,2-dimethylpropanoic acid (MDMPA), and hydrophilic main-chain derivatives 3-mercaptoisobutoyl-3-aminopropanoic acid (MIBAPA), 3-mercaptoisobutoylglycine (MIBGly) and 3-mercaptoisobutoylaspartic acid (MIBAsp). To evaluate the effects of these MIBA derivatives on the properties of CdTe QDs, they were used as capping agents during hydrothermal synthesis of the QDs with sodium tellurite as the tellurium source. The effects of the mercapto acids were revealed by comparing the growth rate, and full width at half-maximum (FWHM) of the fluorescent peak of CdTe QDs capped with different mercapto acids. All three types of MIBA derivatives gave CdTe QDs with relatively narrow FWHM, similar to MIBA. The hydrophilic MIBA derivatives (ACys, MIBGly, MIBAPA, and MIBAsp) produced CdTe QDs with longer emission wavelength than those from hydrophobic derivatives. Hydrophilic side-chain MIBA, derivative ACys gave CdTe QDs with stronger fluorescence.

  • 加载中
    1. [1]

      (1) Medintz, I. L.; Uyeda, H. T.; ldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4 (6), 435. doi: 10.1038/nmat1390

    2. [2]

      (2) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose,S.; Li, J. J.; Sundaresan, G.;Wu, A. M.; Gambhir, S. S.;Weiss,S. Science 2005, 307 (5709), 538. doi: 10.1126/science.1104274

    3. [3]

      (3) Ling, X.; Deng, D.W.; Zhong,W. Y.; Yu, J. S. Spectrosc. Spect. Anal. 2008, 28 (6), 1317. [凌霞, 邓大伟, 钟文英, 于俊生.光谱学与光谱分析, 2008, 28 (6), 1317.]

    4. [4]

      (4) Liu, X.; Chen, D. N.; Qu, J. L.; Yang, J. T.; Luo, Y. X.; Roy, I.;Wang, X. M.; Lin, X. T.; Zhong, L.; Prasad, P. N.; Xu, G. X.;Niu, H. B. Spectrosc. Spect. Anal. 2010, 30 (5), 1290.[刘夏, 陈丹妮, 屈军乐, 杨坚泰, 罗永祥, Roy, Indrajit, 王晓梅, 林晓潭, 钟磊, Prasad, N Paras, 许改霞, 牛憨笨. 光谱学与光谱分析, 2010, 30 (5), 1290.]

    5. [5]

      (5) Zhang, L. P.; Hu, B.;Wang, J. H. Chem. J. Chin. Univ. 2011, 32 (3), 688. [张立佩, 胡博, 王建华. 高等学校化学学报,2011, 32 (3), 688.]

    6. [6]

      (6) Wang, S. S.;Wang, X. T.; Guo, M. M.; Yu, J. S. Chem. J. Chin. Univ. 2012, 33 (6), 1195. [王珊珊, 王雪婷, 郭明明, 于俊生.高等学校化学学报, 2012, 33 (6), 1195.]

    7. [7]

      (7) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.;Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.;Weller, H.J. Phys. Chem. B 2002, 106 (29), 7177. doi: 10.1021/jp025541k

    8. [8]

      (8) Peng, J.; Fang, X. M.; Chen, Z. H.; Zhang, Z. G. Acta Phys. -Chim. Sin. 2012, 28 (1), 232. [彭静, 方晓明, 陈志鸿, 张正国. 物理化学学报, 2012, 28 (1), 232.] doi: 10.3866/PKU.WHXB201111151

    9. [9]

      (9) Wang, Y.; Hou, Y. B.; Tang, A.W.; Feng, B.; Li, Y.; Teng, F.Acta Phys. -Chim. Sin. 2008, 24 (2), 296. [王琰, 侯延冰, 唐爱伟, 封宾, 李妍, 滕枫. 物理化学学报, 2008, 24 (2),296.] doi: 10.3866/PKU.WHXB20080219

    10. [10]

      (10) Xu, Z.; Li, D. M.; Yao, Y. L.; Xiong, T. T. Acta Phys. -Chim. Sin.2009, 25 (6), 1201. [许臻, 李冬梅, 姚亚玲, 熊婷婷. 物理化学学报, 2009, 25 (6), 1201.] doi: 10.3866/PKU.WHXB20090626

    11. [11]

      (11) Zheng, L. S.; Feng, M.; Zhan, H. B. Acta Phys. -Chim. Sin.2012, 28 (1), 208. [郑立思, 冯苗, 詹红兵. 物理化学学报,2012, 28 (1), 208.] doi: 10.3866/PKU.WHXB201228208

    12. [12]

      (12) Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik,N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y. P.;Donegan, J. F. J. Phys. Chem. C 2007, 111 (40), 14628. doi: 10.1021/jp072463y

    13. [13]

      (13) Zhang, H.;Wang, L. P.; Xiong, H. M.; Hu, L. H.; Yang, B.; Li,W. Adv. Mater. 2003, 15 (20), 1712.

    14. [14]

      (14) Bao, H. B.; ng, Y. J.; Li, Z.; Gao, M. Y. Chem. Mater. 2004,16 (20), 3853. doi: 10.1021/cm049172b

    15. [15]

      (15) Zhang, H.;Wang, D. Y.; Mohwald, H. Angew. Chem. Int. Edit.2006, 45 (5), 748.

    16. [16]

      (16) He, Y.; Sai, L. M.; Lu, H. T.; Hu, M.; Lai,W. Y.; Fan, Q. L.;Wang, L. H.; Huang,W. Chem. Mater. 2007, 19 (3), 359. doi: 10.1021/cm061863f

    17. [17]

      (17) Zou, L.; Gu, Z. Y.; Zhang, N.; Zhang, Y. L.; Fang, Z.; Zhu,W.H.; Zhong, X. H. J. Mater. Chem. 2008, 18 (24), 2807. doi: 10.1039/b801418c

    18. [18]

      (18) Gaponik, N.; Hickey, S. G.; Dorfs, D.; Rogach, A. L.;Eychmuller, A. Small 2010, 6 (13), 1364. doi: 10.1002/smll.v6:13

    19. [19]

      (19) Gaponik, N.; Rogach, A. L. Phys. Chem. Chem. Phys. 2010, 12 (31), 8685. doi: 10.1039/c000916d

    20. [20]

      (20) Li, Y. L.; Jing, L. H.; Qiao, R. R.; Gao, M. Y. Chem. Commun.2011, 47 (33), 9293. doi: 10.1039/c1cc11331c

    21. [21]

      (21) Lesnyak, V.; Gaponik, N.; Eychmuller, A. Chem. Soc. Rev.2013, 42 (7), 2905. doi: 10.1039/c2cs35285k

    22. [22]

      (22) Acar, H. Y.; Kas, R.; Yurtsever, E.; Ozen, C.; Lieberwirth, I.J. Phys. Chem. C 2009, 113 (23), 10005. doi: 10.1021/jp811104s

    23. [23]

      (23) Fang, T.; Ma, K. G.; Ma, L. L.; Bai, J. Y.; Li, X.; Song, H. H.;Guo, H. Q. J. Phys. Chem. C 2012, 116 (22), 12346. doi: 10.1021/jp302820u

    24. [24]

      (24) Ma, K. G.; Fang, T.; Bai, J. Y.; Guo, H. Q. RSC Adv. 2013, 3 (15), 4935. doi: 10.1039/c3ra22877k

    25. [25]

      (25) Ma, K. G.; Bai, J. Y.; Fang, T.; Guo, H. Q. Nano doi: 10.1142/S1793292013500495.

    26. [26]

      (26) Aldeek, F.; Balan, L.; Lambert, J.; Schneider, R.Nanotechnology 2008, 19 (47), 475401. doi: 10.1088/0957-4484/19/47/475401


  • 加载中
    1. [1]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    8. [8]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    11. [11]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(662)
  • Abstract views(616)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return