Citation: SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin. Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1819-1826. doi: 10.3866/PKU.WHXB201305281 shu

Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres

  • Received Date: 6 February 2013
    Available Online: 28 May 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB934700) (973) (2010CB934700) 国家自然科学基金(21173015) (21173015) 中央高校基本科研基金(YWF-11-03-Q-085) (YWF-11-03-Q-085)

  • Au/Cu2O heterogeneous spheres (HGS) were prepared by in situ reduction of preadsorbed AuCl4- on the surface of Cu2O mesoporous spheres (MPS) linked by L-cysteine. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physical adsorption. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methylene blue (MB) under visible light (λ>400 nm) irradiation. The experimental results revealed that the Cu2O MPS kept their mesoporous structure after loading with Au, and small Au nanoparticles (NPs) with a diameter of ~4 nm were identified on the surface of the MPSs. N2 physical adsorption analysis showed that the pore size distributions of Cu2O MPSs were unchanged after loading with Au NPs. Using ethanol as a solvent retarded the redox reaction between AuCl4- and Cu2O, avoiding damage to the mesoporous structures. The Au/Cu2O HGSs exhibited higher visible-light photocatalytic activity for the degradation of methylene blue than the pure Cu2O MPSs. The enhanced photocatalytic efficiency of the Au/Cu2O HGSs was attributed to rapid charge transfer from Cu2O to the loaded Au NPs as well as the surface plasmon resonance of Au NPs.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414, 625. doi: 10.1038/414625a

    3. [3]

      (3) Wang, Z. H.; Zhao, S. P., Zhu, S. Y.; Sun Y. L.; Fang, M.CrystEngComm 2011, 13, 2262. doi: 10.1039/c0ce00681e

    4. [4]

      (4) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012,28, 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012,28, 2214.] doi: 10.3866/PKU.WHXB201206122

    5. [5]

      (5) Pan, Y. L.; Deng, S. Z.; Polavarapu, L.; Gao, N. Y.; Yuan, P. Y.;Sow, C. H.; Xu, Q. H. Langmuir 2012, 28, 12304. doi: 10.1021/la301813v

    6. [6]

      (6) Kochuveedu, S. T.; Oh, J. H.; Do, Y. R.; Kim, D. H. Chem. Eur. J. 2012, 18, 7467.

    7. [7]

      (7) Shang, Y.; Sun, D.; Shao, Y. M.; Zhang, D. F.; Guo, L.; Yang, S.H. Chem. Eur. J. 2012, 18, 14261. doi: 10.1002/chem.v18.45

    8. [8]

      (8) Subramanian, V.;Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc.2004, 126, 4943. doi: 10.1021/ja0315199

    9. [9]

      (9) Tong, G. X.; Guan J. G.; Xiao, Z. D.; Huang, X.; Guan, Y.J. Nanopart. Res. 2010, 12, 3025. doi: 10.1007/s11051-010-9897-2

    10. [10]

      (10) Tong, G. X.; Guan J. G.; Zhang, Q. J. Mater. Chem. Phys. 2011,127, 371. doi: 10.1016/j.matchemphys.2011.02.021

    11. [11]

      (11) Wei, S. Q.; Ma, Y. Y.; Chen, Y. Y.; Liu, L.; Liu, Y.; Shao, Z. C.J. Hazard. Mater. 2011, 194, 243. doi: 10.1016/j.jhazmat.2011.07.096

    12. [12]

      (12) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.;Tanaka, A.; Kondo J. N.; Domen, K. Chem. Commun. 1998, 357.

    13. [13]

      (13) Zhou,W.W.; Yan, B.; Cheng, C.W.; Cong, C. X.; Hu, H. L.;Fan, H. J.; Yu, T. CrystEngComm 2009, 11, 2291. doi: 10.1039/b912034n

    14. [14]

      (14) Cao, Y. B.; Fan, J. M.; Bai, L. Y.; Yuan, F. L.; Chen, Y. F. Cryst. Growth Des. 2010, 10, 232. doi: 10.1021/cg9008637

    15. [15]

      (15) Li, H.; Ni, Y. H.; Cai, Y. F.; Zhang, L.; Zhou, J. Z.; Hong, J. M.;Wei, X.W. J. Mater. Chem. 2009, 19, 594. doi: 10.1039/b818574c

    16. [16]

      (16) Xu, H. L.;Wang,W. Z.; Zhu,W. J. Phys. Chem. B 2006, 110,13829. doi: 10.1021/jp061934y

    17. [17]

      (17) Sun, S. D.; Zhang, H.; Song, X. P.; Liang, S. H.; Kong, C. C.;Yang, Z. M. CrystEngComm 2011, 13, 6040. doi: 10.1039/c1ce05597f

    18. [18]

      (18) Deo, M.; Shinde, D.; Yengantiwar, A.; Jog, J.; Hannoyer, B.;Sauvage, X.; Moreb, M.; Ogale, S. J. Mater. Chem. 2012, 22,17055. doi: 10.1039/c2jm32660d

    19. [19]

      (19) Wang, Y. B.; Zhang, Y. N.; Zhao, G. H.; Tian, H. Y.; Shi, H. J.;Zhou, T. C. ACS Appl. Mater. Interfaces 2012, 4, 3965.doi: 10.1021/am300795w

    20. [20]

      (20) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue,C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b

    21. [21]

      (21) Georgekutty, R.; Seery, M. K.; Pillai, S. C. J. Phys. Chem. C2008, 112, 13563. doi: 10.1021/jp802729a

    22. [22]

      (22) Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Wei,J. Y.; Whangbo, M. H. Angew. Chem. Int. Edit. 2008, 47, 7931.doi: 10.1002/anie.v47:41

    23. [23]

      (23) Jiang, J.; Zhang, L. Z. Chem. Eur. J. 2012, 18, 6360.doi: 10.1002/chem.201102606

    24. [24]

      (24) Wang, H.; You, T. T.; Shi,W.W.; Li, J. H.; Guo, L. J. Phys. Chem. C 2012, 116, 6490. doi: 10.1021/jp212303q

    25. [25]

      (25) Li, X. Z.; Li, F. B. Environ. Sci. Technol. 2001, 35, 2381.doi: 10.1021/es001752w

    26. [26]

      (26) Zhang, H.;Wang, G.; Chen, D.; Lv, X. J.; Li, J. H. Chem. Mater.2008, 20, 6543. doi: 10.1021/cm801796q

    27. [27]

      (27) Hou,W. B.; Cronin, S. B. Adv. Funct. Mater. 2012, 23, 1612.

    28. [28]

      (28) Hirakawa, T.; Kamat, P. V. J. Am. Chem. Soc. 2005, 127, 3928.doi: 10.1021/ja042925a

    29. [29]

      (29) Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U.Nano Lett. 2008, 8, 637. doi: 10.1021/nl0730514

    30. [30]

      (30) Jin, Z.; Xiao, M. D.; Bao, Z. H.;Wang, P.;Wang, J. F. Angew. Chem. Int. Edit. 2012, 51, 6406. doi: 10.1002/anie.201106948

    31. [31]

      (31) Li, C. C.; Zheng, Y. P.;Wang, T. H. J. Mater. Chem. 2012, 22,13216. doi: 10.1039/c2jm16921e

    32. [32]

      (32) Shang, Y.; Zhang, D. F.; Guo, L. J. Mater. Chem. 2012, 22, 856.doi: 10.1039/c1jm14258e

    33. [33]

      (33) Pang, M. L.;Wang, Q. X.; Zeng, H. C. Chem. Eur. J. 2012, 46,14605.

    34. [34]

      (34) Zhang, D. F.; Niu, L. Y.; Jiang, L.; Yin, P. G.; Sun, L. D.; Zhang,H.; Zhang, R.; Guo, L.; Yan, C. H. J. Phys. Chem. C 2008, 112,16011. doi: 10.1021/jp803102h

    35. [35]

      (35) Zhang, D. F.; Zhang, H.; Shang, Y.; Guo, L. Cryst. Growth Des.2011, 11, 3748. doi: 10.1021/cg101283w

    36. [36]

      (36) Zhang, J.; Liu, X. H.;Wang, L.W.; Yang, T. L.; Guo, X. Z.;Wu,S. H.;Wang, S. R.; Zhang, S. M. J. Phys. Chem. C 2011, 115,5352. doi: 10.1021/jp110421v

    37. [37]

      (37) Sun, D.; Yin, P. G.; Guo, L. Acta Phys. -Chim. Sin. 2011, 27,1543. [孙都, 殷鹏刚, 郭林. 物理化学学报, 2011, 27,1543.] doi: 10.3866/PKU.WHXB20110619

    38. [38]

      (38) Gu, J.; Zhang, Y.W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050.doi: 10.1039/c2cs35184f

    39. [39]

      (39) Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X.W. J. Am. Chem. Soc. 2011, 133, 4738. doi: 10.1021/ja2004329

    40. [40]

      (40) Peng, C.; Jiang, B.W.; Liu, Q.; Guo, Z.; Xu, Z. J.; Huang, Q.;Xu, H. J.; Tai, R. Z.; Fan, C. H. Energy Environ. Sci. 2011, 4,2035. doi: 10.1039/c0ee00495b

    41. [41]

      (41) Zuo, X. L.; Peng, C.; Huang, Q.; Song, S. P.;Wang, L. H.; Li,D.; Fan, C. H. Nano Res. 2009, 2, 617. doi: 10.1007/s12274-009-9062-3

    42. [42]

      (42) Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. J. Phys. Chem. C2011, 115, 9136. doi: 10.1021/jp2009989

    43. [43]

      (43) Subramanian, V.;Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc.2004, 126, 4943. doi: 10.1021/ja0315199

    44. [44]

      (44) Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P. L.;Kuo, C. H.; Huang, M. H.; Hsu, C. S. ACS Nano 2011, 5, 959.doi: 10.1021/nn102295p


  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(1333)
  • Abstract views(1647)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return