Citation: LU Jun-Ran, LI Yi, YU Ji-Hong, LU Ying. Predicting Hypothetical Zeolite Frameworks Using Program FraGen[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1661-1665. doi: 10.3866/PKU.WHXB201305273 shu

Predicting Hypothetical Zeolite Frameworks Using Program FraGen

  • Received Date: 29 March 2013
    Available Online: 27 May 2013

    Fund Project: 国家自然科学基金(21001049, 21273098)资助项目 (21001049, 21273098)

  • Zeolites are microporous materials that have been widely used in various chemical industries. Zeolite structure prediction involves building feasible zeolite frameworks on computers, and can be used as a tool to determine the structures of synthesized zeolites and to identify promising synthetic candidates for future rational synthesis. Although many approaches for zeolite structure prediction have been developed, none of them has proved to be efficient at generating chemically feasible structures. To solve this problem, we developed the computer program FraGen to predict inorganic crystal structures. FraGen is capable of generating atoms in a given unit cell, adjusting the locations of atoms through the parallel tempering Monte Carlo method, and producing chemically feasible crystal structures. In this work, starting from the structure of zeolite AET, we use FraGen to predict a series of novel zeolite structures by controlling the Wyckoff site symmetry of each atom specifically. Compared with previous prediction methods, FraGen can generate more structures that are chemically feasible.

  • 加载中
    1. [1]

      (1) Xu, R. R.; Pang,W. Q.; Yu, J. H.; Huo, Q. S.; Chen, J. S.Molecular Sieve and Porous Materials Chemistry, 1st ed.;Science Press: Beijing, 2004; pp 13-22. [徐如人, 庞文琴, 于吉红, 霍启生, 陈接胜. 分子筛与多孔材料化学. 第一版. 北京:科学出版社, 2004: 13-22.]

    2. [2]

      (2) Xu, R.; Pang,W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, 1st ed.;JohnWiley & Sons (Asia): Singapore, 2007; pp 1-18.

    3. [3]

      (3) Mellot-Draznieks, C.; Girard, S.; Férey, G.; Schön, J. C.;Cancarevic, Z.; Jansen, M. Chem. Eur. J. 2002, 8, 4102. doi: 10.1002/1521-3765(20020916)8:18<4102::AID-CHEM4102>3.0.CO;2-3

    4. [4]

      (4) Woodley, S. M.; Catlow, C. R. A.; Battle, P. D.; Gale, J. D.Chem. Commun. 2004, 22. doi: 1039/B312526B

    5. [5]

      (5) Deem, M.W.; Newsam, J. M. Nature 1989, 342, 260. doi: 10.1038/342260a0

    6. [6]

      (6) Falcioni, M.; Deem, M.W. J. Chem. Phys. 1999, 110, 1754. doi: 10.1063/1.477812

    7. [7]

      (7) Treacy, M. M. J.; Randall, K. H.; Rao, S.; Perry, J. A.; Chadi, D.J. Z. Kristallogr. 1997, 212, 768. doi: 10.1524/zkri.1997.212.11.768

    8. [8]

      (8) Treacy, M. M. J.; Rivin, I.; Balkovsky, E.; Randall, K. H.;Foster, M. D. Microporous Mesoporous Mat. 2004, 74, 121. doi: 10.1016/j.micromeso.2004.06.013

    9. [9]

      (9) Li, Y.; Yu, J.; Liu, D.; Yan,W.; Xu, R.; Xu, Y. Chem. Mater.2003, 15, 2780. doi: 10.1021/cm0213826

    10. [10]

      (10) Li, Y.; Yu, J.;Wang, Z.; Zhang, J.; Guo, M.; Xu, R. Chem. Mater. 2005, 17, 4399. doi: 10.1021/cm050536p

    11. [11]

      (11) Li, Y.; Guo, M.; Yu, J.; Li, J.; Xu, R. Stud. Surf. Sci. Catal.2004, 154, 308. doi: 10.1016/S0167-2991(04)80817-6

    12. [12]

      (12) Li, Y.; Yu, J.; Xu, R.; Baerlocher, C.; McCusker, L. B. Angew. Chem. Int. Edit. 2008, 47, 4401. doi: 10.1002/anie.200705175

    13. [13]

      (13) Deem, M.W. Deem Database; http://www.hypotheticalzeolites.net/DATABASE/DEEM/index.html (accessed Mar 05, 2013).

    14. [14]

      (14) Foster, M. D.; Treacy, M. M. J. http://www.hypotheticalzeolites.net/NEWDATABASE/about.html (accessed Mar 05, 2013).

    15. [15]

      (15) Earl, D. J.; Deem, M.W. Ind. Eng. Chem. Res. 2006, 45, 5449.doi: 10.1021/ie0510728

    16. [16]

      (16) Deem, M.W.; Pophale, R.; Cheeseman, P. A.; Earl, D. J.J. Phys. Chem. C 2009, 113, 21353. doi: 10.1021/jp906984z

    17. [17]

      (17) Pophale, R.; Cheeseman, P. A.; Deem, M.W. Phys. Chem. Chem. Phys. 2011, 13, 12407. doi: 10.1039/c0cp02255a

    18. [18]

      (18) Li, Y.; Yu, J.; Xu, R. Hypothetical Zeolite Database. http://mezeopor.jlu.edu.cn/hypo/ (accessed Mar 05, 2013).

    19. [19]

      (19) Li, Y.; Yu, J.; Xu, R. Angew. Chem. Int. Edit. 2013, 52, 1673.doi: 10.1002/anie.201206340

    20. [20]

      (20) Sartbaeva, A.;Wells, S. A.; Treacy, M. M. J.; Thorpe, M. F. Nat. Mater. 2006, 5, 962. doi: 10.1038/nmat1784

    21. [21]

      (21) Li, Y.; Yu, J.; Xu, R. J. Appl. Cryst. 2012, 45, 855. doi: 10.1107/S002188981201878X

    22. [22]

      (22) Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures;http://www.iza-structure.org/databases/ (accessed Mar 05, 2013).

    23. [23]

      (23) International Tables for Crystallography: Space-group Symmetry, 5th ed.; Springer: Dordrecht, 2005; Vol. A, pp300-301.

    24. [24]

      (24) Meier,W. M.; Moeck, H. J. J. Solid State Chem. 1979, 27, 349.doi: 10.1016/0022-4596(79)90177-4

    25. [25]

      (25) Gale, J. D. Z. Kristallogr. 2005, 220, 552. doi: 10.1524/zkri.220.5.552.65070

    26. [26]

      (26) Lewis, G. V.; Catlow, C. R. J. Phys. C: Solid State Phys. 1985,18, 1149. doi: 10.1088/0022-3719/18/6/010

    27. [27]

      (27) Huo,W. F.; Li, Y.; Lu, J. R.; Yu, J. H.; Xu, R. R.; Li, J. Acta Phys. -Chim Sin. 2012, 28, 536. [霍卫峰, 李乙, 卢君然,于吉红, 徐如人, 李晶. 物理化学学报, 2012, 28, 536.] doi: 10.3866/PKU.WHXB201201041

    28. [28]

      (28) Foster, M. D.; Treacy, M. M. J. Atlas of Prospective Zeolite Structureshttp://www.hypotheticalzeolites.net/ (accessed Mar05, 2013).


  • 加载中
    1. [1]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    5. [5]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    6. [6]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    13. [13]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    17. [17]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

Metrics
  • PDF Downloads(664)
  • Abstract views(718)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return