Citation: LU Jun-Ran, LI Yi, YU Ji-Hong, LU Ying. Predicting Hypothetical Zeolite Frameworks Using Program FraGen[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1661-1665. doi: 10.3866/PKU.WHXB201305273 shu

Predicting Hypothetical Zeolite Frameworks Using Program FraGen

  • Received Date: 29 March 2013
    Available Online: 27 May 2013

    Fund Project: 国家自然科学基金(21001049, 21273098)资助项目 (21001049, 21273098)

  • Zeolites are microporous materials that have been widely used in various chemical industries. Zeolite structure prediction involves building feasible zeolite frameworks on computers, and can be used as a tool to determine the structures of synthesized zeolites and to identify promising synthetic candidates for future rational synthesis. Although many approaches for zeolite structure prediction have been developed, none of them has proved to be efficient at generating chemically feasible structures. To solve this problem, we developed the computer program FraGen to predict inorganic crystal structures. FraGen is capable of generating atoms in a given unit cell, adjusting the locations of atoms through the parallel tempering Monte Carlo method, and producing chemically feasible crystal structures. In this work, starting from the structure of zeolite AET, we use FraGen to predict a series of novel zeolite structures by controlling the Wyckoff site symmetry of each atom specifically. Compared with previous prediction methods, FraGen can generate more structures that are chemically feasible.


    1. [1]

      (1) Xu, R. R.; Pang,W. Q.; Yu, J. H.; Huo, Q. S.; Chen, J. S.Molecular Sieve and Porous Materials Chemistry, 1st ed.;Science Press: Beijing, 2004; pp 13-22. [徐如人, 庞文琴, 于吉红, 霍启生, 陈接胜. 分子筛与多孔材料化学. 第一版. 北京:科学出版社, 2004: 13-22.]

    2. [2]

      (2) Xu, R.; Pang,W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, 1st ed.;JohnWiley & Sons (Asia): Singapore, 2007; pp 1-18.

    3. [3]

      (3) Mellot-Draznieks, C.; Girard, S.; Férey, G.; Schön, J. C.;Cancarevic, Z.; Jansen, M. Chem. Eur. J. 2002, 8, 4102. doi: 10.1002/1521-3765(20020916)8:18<4102::AID-CHEM4102>3.0.CO;2-3

    4. [4]

      (4) Woodley, S. M.; Catlow, C. R. A.; Battle, P. D.; Gale, J. D.Chem. Commun. 2004, 22. doi: 1039/B312526B

    5. [5]

      (5) Deem, M.W.; Newsam, J. M. Nature 1989, 342, 260. doi: 10.1038/342260a0

    6. [6]

      (6) Falcioni, M.; Deem, M.W. J. Chem. Phys. 1999, 110, 1754. doi: 10.1063/1.477812

    7. [7]

      (7) Treacy, M. M. J.; Randall, K. H.; Rao, S.; Perry, J. A.; Chadi, D.J. Z. Kristallogr. 1997, 212, 768. doi: 10.1524/zkri.1997.212.11.768

    8. [8]

      (8) Treacy, M. M. J.; Rivin, I.; Balkovsky, E.; Randall, K. H.;Foster, M. D. Microporous Mesoporous Mat. 2004, 74, 121. doi: 10.1016/j.micromeso.2004.06.013

    9. [9]

      (9) Li, Y.; Yu, J.; Liu, D.; Yan,W.; Xu, R.; Xu, Y. Chem. Mater.2003, 15, 2780. doi: 10.1021/cm0213826

    10. [10]

      (10) Li, Y.; Yu, J.;Wang, Z.; Zhang, J.; Guo, M.; Xu, R. Chem. Mater. 2005, 17, 4399. doi: 10.1021/cm050536p

    11. [11]

      (11) Li, Y.; Guo, M.; Yu, J.; Li, J.; Xu, R. Stud. Surf. Sci. Catal.2004, 154, 308. doi: 10.1016/S0167-2991(04)80817-6

    12. [12]

      (12) Li, Y.; Yu, J.; Xu, R.; Baerlocher, C.; McCusker, L. B. Angew. Chem. Int. Edit. 2008, 47, 4401. doi: 10.1002/anie.200705175

    13. [13]

      (13) Deem, M.W. Deem Database; http://www.hypotheticalzeolites.net/DATABASE/DEEM/index.html (accessed Mar 05, 2013).

    14. [14]

      (14) Foster, M. D.; Treacy, M. M. J. http://www.hypotheticalzeolites.net/NEWDATABASE/about.html (accessed Mar 05, 2013).

    15. [15]

      (15) Earl, D. J.; Deem, M.W. Ind. Eng. Chem. Res. 2006, 45, 5449.doi: 10.1021/ie0510728

    16. [16]

      (16) Deem, M.W.; Pophale, R.; Cheeseman, P. A.; Earl, D. J.J. Phys. Chem. C 2009, 113, 21353. doi: 10.1021/jp906984z

    17. [17]

      (17) Pophale, R.; Cheeseman, P. A.; Deem, M.W. Phys. Chem. Chem. Phys. 2011, 13, 12407. doi: 10.1039/c0cp02255a

    18. [18]

      (18) Li, Y.; Yu, J.; Xu, R. Hypothetical Zeolite Database. http://mezeopor.jlu.edu.cn/hypo/ (accessed Mar 05, 2013).

    19. [19]

      (19) Li, Y.; Yu, J.; Xu, R. Angew. Chem. Int. Edit. 2013, 52, 1673.doi: 10.1002/anie.201206340

    20. [20]

      (20) Sartbaeva, A.;Wells, S. A.; Treacy, M. M. J.; Thorpe, M. F. Nat. Mater. 2006, 5, 962. doi: 10.1038/nmat1784

    21. [21]

      (21) Li, Y.; Yu, J.; Xu, R. J. Appl. Cryst. 2012, 45, 855. doi: 10.1107/S002188981201878X

    22. [22]

      (22) Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures;http://www.iza-structure.org/databases/ (accessed Mar 05, 2013).

    23. [23]

      (23) International Tables for Crystallography: Space-group Symmetry, 5th ed.; Springer: Dordrecht, 2005; Vol. A, pp300-301.

    24. [24]

      (24) Meier,W. M.; Moeck, H. J. J. Solid State Chem. 1979, 27, 349.doi: 10.1016/0022-4596(79)90177-4

    25. [25]

      (25) Gale, J. D. Z. Kristallogr. 2005, 220, 552. doi: 10.1524/zkri.220.5.552.65070

    26. [26]

      (26) Lewis, G. V.; Catlow, C. R. J. Phys. C: Solid State Phys. 1985,18, 1149. doi: 10.1088/0022-3719/18/6/010

    27. [27]

      (27) Huo,W. F.; Li, Y.; Lu, J. R.; Yu, J. H.; Xu, R. R.; Li, J. Acta Phys. -Chim Sin. 2012, 28, 536. [霍卫峰, 李乙, 卢君然,于吉红, 徐如人, 李晶. 物理化学学报, 2012, 28, 536.] doi: 10.3866/PKU.WHXB201201041

    28. [28]

      (28) Foster, M. D.; Treacy, M. M. J. Atlas of Prospective Zeolite Structureshttp://www.hypotheticalzeolites.net/ (accessed Mar05, 2013).


    1. [1]

      (1) Xu, R. R.; Pang,W. Q.; Yu, J. H.; Huo, Q. S.; Chen, J. S.Molecular Sieve and Porous Materials Chemistry, 1st ed.;Science Press: Beijing, 2004; pp 13-22. [徐如人, 庞文琴, 于吉红, 霍启生, 陈接胜. 分子筛与多孔材料化学. 第一版. 北京:科学出版社, 2004: 13-22.]

    2. [2]

      (2) Xu, R.; Pang,W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, 1st ed.;JohnWiley & Sons (Asia): Singapore, 2007; pp 1-18.

    3. [3]

      (3) Mellot-Draznieks, C.; Girard, S.; Férey, G.; Schön, J. C.;Cancarevic, Z.; Jansen, M. Chem. Eur. J. 2002, 8, 4102. doi: 10.1002/1521-3765(20020916)8:18<4102::AID-CHEM4102>3.0.CO;2-3

    4. [4]

      (4) Woodley, S. M.; Catlow, C. R. A.; Battle, P. D.; Gale, J. D.Chem. Commun. 2004, 22. doi: 1039/B312526B

    5. [5]

      (5) Deem, M.W.; Newsam, J. M. Nature 1989, 342, 260. doi: 10.1038/342260a0

    6. [6]

      (6) Falcioni, M.; Deem, M.W. J. Chem. Phys. 1999, 110, 1754. doi: 10.1063/1.477812

    7. [7]

      (7) Treacy, M. M. J.; Randall, K. H.; Rao, S.; Perry, J. A.; Chadi, D.J. Z. Kristallogr. 1997, 212, 768. doi: 10.1524/zkri.1997.212.11.768

    8. [8]

      (8) Treacy, M. M. J.; Rivin, I.; Balkovsky, E.; Randall, K. H.;Foster, M. D. Microporous Mesoporous Mat. 2004, 74, 121. doi: 10.1016/j.micromeso.2004.06.013

    9. [9]

      (9) Li, Y.; Yu, J.; Liu, D.; Yan,W.; Xu, R.; Xu, Y. Chem. Mater.2003, 15, 2780. doi: 10.1021/cm0213826

    10. [10]

      (10) Li, Y.; Yu, J.;Wang, Z.; Zhang, J.; Guo, M.; Xu, R. Chem. Mater. 2005, 17, 4399. doi: 10.1021/cm050536p

    11. [11]

      (11) Li, Y.; Guo, M.; Yu, J.; Li, J.; Xu, R. Stud. Surf. Sci. Catal.2004, 154, 308. doi: 10.1016/S0167-2991(04)80817-6

    12. [12]

      (12) Li, Y.; Yu, J.; Xu, R.; Baerlocher, C.; McCusker, L. B. Angew. Chem. Int. Edit. 2008, 47, 4401. doi: 10.1002/anie.200705175

    13. [13]

      (13) Deem, M.W. Deem Database; http://www.hypotheticalzeolites.net/DATABASE/DEEM/index.html (accessed Mar 05, 2013).

    14. [14]

      (14) Foster, M. D.; Treacy, M. M. J. http://www.hypotheticalzeolites.net/NEWDATABASE/about.html (accessed Mar 05, 2013).

    15. [15]

      (15) Earl, D. J.; Deem, M.W. Ind. Eng. Chem. Res. 2006, 45, 5449.doi: 10.1021/ie0510728

    16. [16]

      (16) Deem, M.W.; Pophale, R.; Cheeseman, P. A.; Earl, D. J.J. Phys. Chem. C 2009, 113, 21353. doi: 10.1021/jp906984z

    17. [17]

      (17) Pophale, R.; Cheeseman, P. A.; Deem, M.W. Phys. Chem. Chem. Phys. 2011, 13, 12407. doi: 10.1039/c0cp02255a

    18. [18]

      (18) Li, Y.; Yu, J.; Xu, R. Hypothetical Zeolite Database. http://mezeopor.jlu.edu.cn/hypo/ (accessed Mar 05, 2013).

    19. [19]

      (19) Li, Y.; Yu, J.; Xu, R. Angew. Chem. Int. Edit. 2013, 52, 1673.doi: 10.1002/anie.201206340

    20. [20]

      (20) Sartbaeva, A.;Wells, S. A.; Treacy, M. M. J.; Thorpe, M. F. Nat. Mater. 2006, 5, 962. doi: 10.1038/nmat1784

    21. [21]

      (21) Li, Y.; Yu, J.; Xu, R. J. Appl. Cryst. 2012, 45, 855. doi: 10.1107/S002188981201878X

    22. [22]

      (22) Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures;http://www.iza-structure.org/databases/ (accessed Mar 05, 2013).

    23. [23]

      (23) International Tables for Crystallography: Space-group Symmetry, 5th ed.; Springer: Dordrecht, 2005; Vol. A, pp300-301.

    24. [24]

      (24) Meier,W. M.; Moeck, H. J. J. Solid State Chem. 1979, 27, 349.doi: 10.1016/0022-4596(79)90177-4

    25. [25]

      (25) Gale, J. D. Z. Kristallogr. 2005, 220, 552. doi: 10.1524/zkri.220.5.552.65070

    26. [26]

      (26) Lewis, G. V.; Catlow, C. R. J. Phys. C: Solid State Phys. 1985,18, 1149. doi: 10.1088/0022-3719/18/6/010

    27. [27]

      (27) Huo,W. F.; Li, Y.; Lu, J. R.; Yu, J. H.; Xu, R. R.; Li, J. Acta Phys. -Chim Sin. 2012, 28, 536. [霍卫峰, 李乙, 卢君然,于吉红, 徐如人, 李晶. 物理化学学报, 2012, 28, 536.] doi: 10.3866/PKU.WHXB201201041

    28. [28]

      (28) Foster, M. D.; Treacy, M. M. J. Atlas of Prospective Zeolite Structureshttp://www.hypotheticalzeolites.net/ (accessed Mar05, 2013).


  • 加载中
    1. [1]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    2. [2]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    13. [13]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    17. [17]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    18. [18]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    19. [19]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    20. [20]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

Metrics
  • PDF Downloads(664)
  • Abstract views(765)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return