Citation: GE Zhen-Peng, SHI Yan-Chao, LI Xiao-Yi. Effects of Ortho nal Electric Field on Water Flux through a Carbon Nanotube[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1655-1660. doi: 10.3866/PKU.WHXB201305222
-
Water transport in nanopores is important for many biological processes and the design of nanodevices. It has been demonstrated that water molecules are transported through a (6,6)-type carbon nanotube (CNT) by forming single-file chains. However, a controllable water flow through a CNT remains difficult to achieve. In this paper, we investigated how to control the net flux of water molecules transported through a CNT and the on-off gating behavior of the CNT using an ortho nal electric field. With a 200 MPa pressure difference acting on the top of the first layer of water molecules as the driving force, the net flux of water molecules decreased linearly as the ortho nal electric field strength (E) increased from 1 to 3 V· nm-1. When E increased over 3 V·nm-1, the flow of water molecules through the CNT was turned off and the net flux was almost zero. Both the orientation of water dipoles and flipping frequency were strongly correlated with the water occupancy in this case.
-
-
[1]
(1) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2004, 86,50. doi: 10.1016/S0006-3495(04)74082-5
-
[2]
(2) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2002, 83,154. doi: 10.1016/S0006-3495(02)75157-6
-
[3]
(3) Ma, M. D.; Shen, L.; Sheridan, J.; Liu, J. Z.; Chen, C.; Zheng,Q. Phys. Rev. E 2011, 83, 036316. doi: 10.1103/PhysRevE.83.036316
-
[4]
(4) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,188. doi: 10.1038/35102535
-
[5]
(5) Waghe, A.; Rasaiah, J. C.; Hummer, G. J. Chem. Phys. 2002,117, 10789. doi: 10.1063/1.1519861
-
[6]
(6) Holt, J. K.; Park, H. G.;Wang,Y. M.; Stadermann, M.; Artyukhin,A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006,312, 1034. doi: 10.1126/science.1126298
-
[7]
(7) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. R.Nano Lett. 2010, 10, 4067. doi: 10.1021/nl1021046
-
[8]
(8) Zhang, Z. Q.; Ye, H. F.; Liu, Z.; Ding, J. N.; Cheng, G. G.; Ling,Z. Y.; Zheng, Y. G.;Wang, L.;Wang, J. B. J. Appl. Phys. 2012,111, 114304. doi: 10.1063/1.4724344
-
[9]
(9) Zuo, G. C.; Shen, R.; Ma, S. J.; Guo,W. L. ACS Nano 2010, 4,205. doi: 10.1021/nn901334w
-
[10]
(10) Chaudhury, M. K.; Whitesides, G. M. Science 1992, 256, 1539.doi: 10.1126/science.256.5063.1539
-
[11]
(11) Linke, H.; Aleman, B. J.; Melling, L. D.; Taormina, M. J.;Francis, M. J.; Dow-Hygelund, C. C.; Narayanan, V.; Taylor,R. P.; Stout, A. Phys. Rev. Lett. 2006, 96, 154502. doi: 10.1103/PhysRevLett.96.154502
-
[12]
(12) Joseph, S.; Aluru, N. R. Phys. Rev. Lett. 2008, 101, 064502.doi: 10.1103/PhysRevLett.101.064502
-
[13]
(13) Joseph, S.; Aluru, N. R. Nano Lett. 2008, 8, 452. doi: 10.1021/nl072385q
-
[14]
(14) Vaitheeswaran, S.; Yin, H.; Rasaiah, J. C. J. Phys. Chem. B2005, 109, 6629. doi: 10.1021/jp045591k
-
[15]
(15) Bratko, D.; Daub, C. D.; Leung, K.; Luzar, A. J. Am. Chem. Soc.2007, 129, 2504. doi: 10.1021/ja0659370
-
[16]
(16) Li, J. Y.; ng, X. J.; Lu, H. J.; Li, D.; Fang, H. P.; Zhou, R. H.Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3687. doi: 10.1073/pnas.0604541104
-
[17]
(17) Raghunathan, A. V.; Aluru, N. R. Phys. Rev. Lett. 2006, 97.
-
[18]
(18) Suk, M. E.; Aluru, N. R. Phys. Chem. Chem. Phys. 2009, 11,8614. doi: 10.1039/b903541a
-
[19]
(19) ng, X. J.; Li, J. Y.; Lu, H. J.;Wan, R. Z.; Li, J. C.; Hu, J.;Fang, H. P. Nat. Nanotechnol. 2007, 2, 709. doi: 10.1038/nnano.2007.320
-
[20]
(20) Won, C. Y.; Joseph, S.; Aluru, N. R. J. Chem. Phys. 2006, 125,117701. doi: 10.1063/1.2338305
-
[21]
(21) Garate, J. A.; English, N. J.; MacElroy, J. M. D. J. Chem. Phys.2009, 131, 8.
-
[22]
(22) Dzubiella, J.; Allen, R. J.; Hansen, J. P. J. Chem. Phys. 2004,120, 5001. doi: 10.1063/1.1665656
-
[23]
(23) Figueras, L.; Faraudo, J. Mol. Simulat. 2012, 38, 23.doi: 10.1080/08927022.2011.599032
-
[24]
(24) Su, J. Y.; Guo, H. X. ACS Nano 2011, 5, 351. doi: 10.1021/nn1014616
-
[25]
(25) Lü, Y. J.; Chen, M. Acta Phys. -Chim. Sin. 2012, 28, 1070.[吕勇军, 陈民. 物理化学学报, 2012, 28, 1070.] doi: 10.3866/PKU.WHXB201202213
-
[26]
(26) LI, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28,573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28,573.] doi: 10.3866/PKU.WHXB201112191
-
[27]
(27) Zhang, X.; Zhang, Q.; Zhao, D. X. Acta Phys. -Chim. Sin. 2012,28, 1037. [张霞, 张强, 赵东霞. 物理化学学报, 2012,28, 1037.] doi: 10.3866/PKU.WHXB201203072
-
[28]
(28) Phillips, J. C.; Braun, R.;Wang,W.; Gumbart, J.; Tajkhorshid,E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K.J. Comput. Chem. 2005, 26, 1781.
-
[29]
(29) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.;Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.;Vorobyov, I.; MacKerell, A. D. J. Comput. Chem. 2010, 31, 671.
-
[30]
(30) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869
-
[31]
(31) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117
-
[32]
(32) Wan, R.; Lu, H.; Li, J.; Bao, J.; Hu, J.; Fang, H. Phys. Chem. Chem. Phys. 2009, 11, 9898. doi: 10.1039/b907926m
-
[33]
(33) Wan, R. Z.; Li, J. Y.; Lu, H. J.; Fang, H. P. J. Am. Chem. Soc.2005, 127, 7166. doi: 10.1021/ja050044d
-
[34]
(34) Yang, Y. L.; Li, X. Y.; Jiang, J. L.; Du, H. L.; Zhao, L. N.; Zhao,Y. L. ACS Nano 2010, 4, 5755. doi: 10.1021/nn1014825
-
[35]
(35) Liu, B.; Li, X. Y.; Li, B. L.; Xu, B. Q.; Zhao, Y. L. Nano Lett.2009, 9, 1386. doi: 10.1021/nl8030339
-
[36]
(36) Wu, K. F.; Zhou, B.; Xiu, P.; Qi,W. P.;Wan, R. Z.; Fang, H. P.J. Chem. Phys. 2010, 133, 204702. doi: 10.1063/1.3509396
-
[37]
(37) Zhu, F.; Schulten, K. Biophys. J. 2003, 85, 236. doi: 10.1016/S0006-3495(03)74469-5
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[6]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[7]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[12]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[13]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[14]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[15]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[16]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[17]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[18]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[19]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[20]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[1]
Metrics
- PDF Downloads(825)
- Abstract views(993)
- HTML views(38)