Citation: WANG Yang, SHAO Xiang, WANG Bing. Preparation, Characterization and Photocatalytic Activity of Cr-Doped Rutile TiO2(110) Single Crystal Thin Films[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1363-1369. doi: 10.3866/PKU.WHXB201305221
-
The growth of Cr-doped rutile TiO2(110) homoepitaxial single crystal thin films was investigated using pulsed laser deposition (PLD) method. Surface morphology and electronic structure were characterized using scanning tunneling microscopy/spectroscopy (STM/STS), X-ray and ultraviolet photoemission spectroscopy (XPS/UPS). The optical absorption spectra were measured using ultravioletvisible (UV-Vis) absorption spectroscopy. From STM images, we observed that the atomic flat TiO2(110)-(1×1) surface maintained at Cr doping concentration of 6% (atomic ratio), indicating a negligible effect of the Cr dopants on the surface morphology. The Cr doped ruteile TiO2(110) film showed higher tunneling conductance than undoped rutile single crystal. XPS and UPS spectra indicated that Cr atoms bond to lattice O, exhibiting an +3 oxidation state of +3 and introducing an impurity state above the valence band maximum by 0.4 eV. The UV-Vis absorption spectrum of the Cr doped film showed an absorbance extended to ~650 nm, in a visible light range, which was consistent with the UPS spectra. Using the Cr-doped TiO2 films, the dissociation of methanol molecules was only observed under the UV light illumination (wavelength shorter than 430 nm), however, the dissociation reaction was not observed under the visible light illumination (wavelength longer than 430 nm). Our results suggest that the monodoping by Cr element may not be sufficient to promote the visible light photoactivity of rultile TiO2(110) surface.
-
Keywords:
-
Rutile TiO2 thin film
, - Cr-doped,
- Band structure,
- Photocatalysis
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Zafra, A.; Garcia, J.; Milis, A.; Domenech, X. J. Mol. Catal.1991, 70, 343. doi: 10.1016/0304-5102(91)80129-Q
-
[3]
(3) Herrmann, J. M.; Disdier, J.; Pichat, P. J. Catal. 1988, 113, 72.doi: 10.1016/0021-9517(88)90238-2
-
[4]
(4) Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 303.doi: 10.1021/ja00443a081
-
[5]
(5) Hidaka, H.; Nakamura, T.; Ishizaka, A.; Tsuchiya, M.; Zhao, J.C. J. Photochem. Photobiol. A 1992, 66, 367. doi: 10.1016/1010-6030(92)80009-K
-
[6]
(6) Pollema, C. H.; Hendrix, J. L.; Milosavljevic, E. B.; Solujic, L.;Nelson, J. H. J. Photochem. Photobiol. A 1992, 66, 235.doi: 10.1016/1010-6030(92)85217-I
-
[7]
(7) Chen, D.; Ray, A. K. Chem. Eng. Sci. 2001, 56, 1561.doi: 10.1016/S0009-2509(00)00383-3
-
[8]
(8) Kanki, T.; Yoneda, H.; Sano, N.; Toyoda, A.; Nagai, C. Chem. Eng. J. 2004, 97, 77. doi: 10.1016/S1385-8947(03)00112-8
-
[9]
(9) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W.Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
-
[10]
(10) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. J. Phys. Chem. Solids 2002, 63, 1909. doi: 10.1016/S0022-3697(02)00177-4
-
[11]
(11) Su, B. T.; Sun, J. X.; Hu, C. L.; Zhang, X. H.; Fei, P.; Lei, Z. Q.Acta Phys. -Chim. Sin. 2009, 25, 1561. [苏碧桃, 孙佳星, 胡常林, 张小红, 费鹏, 雷自强. 物理化学学报, 2009, 25, 1561.]doi: 10.3866/PKU.WHXB20090750
-
[12]
(12) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526
-
[13]
(13) Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J. M. Langmuir1994, 10, 643. doi: 10.1021/la00015a010
-
[14]
(14) Osterwalder, J.; Droubay, T.; Kaspar, T.;Williams, J.;Wang, C.M.; Chambers, S. A. Thin Solid Films 2005, 484, 289.doi: 10.1016/j.tsf.2005.02.028
-
[15]
(15) Nishimura, A.; Mitsui, G.; Nakamura, K.; Hirota, M.; Hu, E. Int. J. Photoenergy 2012, 2012, 1. doi: 10.1155/2012/184169
-
[16]
(16) Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Phys. -Chim. Sin. 2004, 20, 138. [吴树新, 马智, 秦永宁,齐晓周, 梁珍成. 物理化学学报, 2004, 20, 138.] doi: 10.3866/PKU.WHXB201210082
-
[17]
(17) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.;Hashimoto, K. Appl. Catal. B-Environ. 2010, 96, 142.doi: 10.1016/j.apcatb.2010.02.011
-
[18]
(18) Tian, B.; Li, C.; Zhang, J. Chem. Eng. J. 2012, 191, 402.doi: 10.1016/j.cej.2012.03.038
-
[19]
(19) Zhu, J. F.; Deng, Z. G.; Chen, F.; Zhang, J. L.; Chen, H. J.;Anpo, M.; Huang, J. Z.; Zhang, L. Z. Appl. Catal. B-Environ.2006, 62, 329. doi: 10.1016/j.apcatb.2005.08.013
-
[20]
(20) Herrmann, J. M. New J. Chem. 2012, 36, 883. doi: 10.1039/c2nj20914d
-
[21]
(21) Ohno, T.; Sarukawa, K.; Matsumura, M. New J. Chem. 2002,26, 1167. doi: 10.1039/b202140d
-
[22]
(22) Taguchi, T.; Saito, Y.; Sarukawa, K.; Ohno, T.; Matsumura, M.New J. Chem. 2003, 27, 1304. doi: 10.1039/b304518h
-
[23]
(23) Herrmann, J. M. Appl. Catal. B-Environ. 2010, 99, 461.doi: 10.1016/j.apcatb.2010.05.012
-
[24]
(24) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0
-
[25]
(25) He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Nat. Mater. 2009, 8, 585. doi: 10.1038/nmat2466
-
[26]
(26) Diebold, U.; Anderson, J. F.; Ng, K. O.; Vanderbilt, D. Phys. Rev. Lett. 1996, 77, 1322. doi: 10.1103/PhysRevLett.77.1322
-
[27]
(27) Ohsawa, T.; Yamamoto, Y.; Sumiya, M.; Matsumoto, Y.;Koinuma, H. Langmuir 2004, 20, 3018. doi: 10.1021/la034794h
-
[28]
(28) Bikondoa, O.; Pang, C. L.; Ithnin, R.; Muryn, C. A.; Onishi, H.;Thornton, G. Nat. Mater. 2006, 5, 189. doi: 10.1038/nmat1592
-
[29]
(29) Papageorgiou, A. C.; Beglitis, N. S.; Pang, C. L.; Teobaldi, G.;Cabailh, G.; Chen, Q.; Fisher, A. J.; Hofer,W. A.; Thornton, G.Proc. Natl. Acad. Sci. 2010, 107, 2391. doi: 10.1073/pnas.0911349107
-
[30]
(30) Acharya, D. P.; Camillone, N., III; Sutter, P. J. Phys. Chem. C2011, 115, 12095. doi: 10.1021/jp202476v
-
[31]
(31) Cheung, S. H.; Nachimuthu, P.; Engelhard, M. H.;Wang, C. M.;Chambers, S. A. Surf. Sci. 2008, 602, 133. doi: 10.1016/j.susc.2007.09.061
-
[32]
(32) Tanner, R. E.; Liang, Y.; Altman, E. I. Surf. Sci. 2002, 506, 251.doi: 10.1016/S0039-6028(02)01388-2
-
[33]
(33) Maurice, V.; Cadot, S.; Marcus, P. Surf. Sci. 2000, 458, 195.doi: 10.1016/S0039-6028(00)00439-8
-
[34]
(34) Borodin, A.; Reichling, M. Phys. Chem. Chem. Phys. 2011, 13,15442. doi: 10.1039/c0cp02835e
-
[35]
(35) Zhao, Z. Y.; Liu, Q. J.; Zhang, J.; Zhu, Z. Q. Acta Phys. Sin.2007, 56, 6592. [赵宗彦, 柳清菊, 张瑾, 朱忠其. 物理学报, 2007, 56, 6592.]
-
[36]
(36) Zhou, C.; Ren, Z.; Tan, S.; Ma, Z.; Mao, X.; Dai, D.; Fan, H.;Yang, X.; LaRue, J.; Cooper, R.;Wodtke, A. M.;Wang, Z.; Li,Z.;Wang, B.; Yang, J.; Hou, J. J. Chem. Sci. 2010, 1, 575.doi: 10.1039/c0sc00316f
-
[37]
(37) Tan, S. J. Characterization of Catalytic and PhotocatalyticReactions on Rutile TiO2(110) Surface at the Single-moleculeLevel. Ph. D. Dissertation, University of Science and Technologyof China, Hefei, 2012. [谭世倞. 金红石TiO2(110)表面催化反应和光化学过程的单分子尺度微观表征[D]. 合肥: 中国科学技术大学, 2012.]
-
[38]
(38) de Armas, R. S.; Oviedo, J.; San Miguel, M. A.; Sanz, J. F.J. Phys. Chem. C 2007, 111, 10023. doi: 10.1021/jp0717701
-
[39]
(39) Tan, S.; Feng, H.; Ji, Y.;Wang, Y.; Zhao, J.; Zhao, A.;Wang, B.;Luo, Y.; Yang, J.; Hou, J. J. Am. Chem. Soc. 2012, 134, 9978.doi: 10.1021/ja211919k
-
[1]
-
-
[1]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[2]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[3]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[6]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[7]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[8]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[9]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[10]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[11]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[12]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[13]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[14]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[16]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[18]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[19]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[20]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[1]
Metrics
- PDF Downloads(1357)
- Abstract views(1195)
- HTML views(3)