Citation: YANG Zhi-Xiong, YANG Jin-Xin, LIU Qi, XIE Yu-Xing, XIONG Xiang, OUYANG Fang-Ping. Electronic Structure and Edge Modification of Armchair MoS2 Nanoribbons[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1648-1654. doi: 10.3866/PKU.WHXB201305211
-
The geometries and electronic properties of armchair MoS2 nanoribbons were investigated by the first-principles method based on density functional theory. It was found that the stability and electronic properties of armchair MoS2 nanoribbons sensitively depend on edge modification. Increasing the number of hydrogen atoms on the edge caused the nanoribbons to become more stable and transition between indirect-gap semiconductor, semi-metal and direct-gap semiconductor. The band structure and densities of states of the nanoribbons indicated that low energy bands contributed to edge states. Different hydrogen adsorption patterns on each edge induce two kinds of edge state on the nanoribbons and these two kinds of edge state have little effect on each other. The relationships between the bandgap and width of three types of nanoribbons were studied. Nanoribbons terminated with zero or eight hydrogen atoms in each unit cell have a bandgap that oscillates with width in a period of three, while the bandgap changes nonperiodically in those terminated with four hydrogen atoms.
-
-
[1]
(1) Alexiev, V.; Prins, R.;Weber, T. Physical Chemistry Chemical Physics 2000, 2 (8), 1815. doi: 10.1039/a909293e
-
[2]
(2) Tenne, R.; Redlich, M. Chem. Soc. Rev. 2010, 39 (5), 1423. doi: 10.1039/b901466g
-
[3]
(3) Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.;Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R.J. Am. Chem. Soc. 1996, 118 (23), 5362. doi: 10.1021/ja9602408
-
[4]
(4) Hershfinkel, M.; Gheber, L. A.; Volterra, V.; Hutchison, J. L.;Margulis, L.; Tenne, R. J. Am. Chem. Soc. 1994, 116 (5), 1914.doi: 10.1021/ja00084a035
-
[5]
(5) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896
-
[6]
(6) Castellanos- mez, A.; Barkelid, M.; ossens, A. M.; Calado,V. E.; van der Zant, H. S.; Steele, G. A. Nano Lett. 2012, 12 (6),3187. doi: 10.1021/nl301164v
-
[7]
(7) Rao, C. N. R.; Nag, A. Eur. J. Inorg. Chem. 2010, 2010 (27),4244.
-
[8]
(8) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105 (13), 136805. doi: 10.1103/PhysRevLett.105.136805
-
[9]
(9) Kumar, A.; Ahluwalia, P. K. Eur. Phys. J. B 2012, 85 (6), 186.doi: 10.1140/epjb/e2012-30070-x
-
[10]
(10) Yun,W. S.; Han, S.W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Phys. Rev. B 2012, 85, 033305. doi: 10.1103/PhysRevB.85.033305
-
[11]
(11) Radisavljevic, B.; Whitwick, M. B.; Kis, A. ACS Nano 2011, 5 (12), 9934. doi: 10.1021/nn203715c
-
[12]
(12) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis,A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano.2010.279
-
[13]
(13) Chang, K.; Chen,W.; Ma, L.; Li, H.; Li, H.; Huang, F.; Xu, Z.;Zhang, Q.; Lee, J. Y. J. Mater. Chem. 2011, 21 (17), 6251. doi: 10.1039/c1jm10174a
-
[14]
(14) Chang, K.; Chen,W. J. Mater. Chem. 2011, 21 (43), 17175. doi: 10.1039/c1jm12942b
-
[15]
(15) Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.;Zhang, H. Angew. Chem. Int. Edit. 2011, 50 (47), 11093. doi: 10.1002/anie.v50.47
-
[16]
(16) Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang,Q.; Chen, X.; Zhang, H. ACS Nano 2011, 6 (1), 74.
-
[17]
(17) Wu, M.;Wang, Y.; Lin, X.; Yu, N.;Wang, L.; Hagfeldt, A.; Ma,T. Physical Chemistry Chemical Physics 2011, 13 (43), 19298.doi: 10.1039/c1cp22819f
-
[18]
(18) Yang, S. Q.; Li, D. X.; Zhang, T. R.; Tao, Z. L.; Chen, J. J. Phys. Chem. C 2012, 116 (1), 1307. doi: 10.1021/jp2097026
-
[19]
(19) Dolui, K.; Das Pemmaraju, C.; Sanvito, S. ACS Nano 2012, 6 (6), 4823. doi: 10.1021/nn301505x
-
[20]
(20) Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. J. Phys. Chem. C2011, 115 (10), 3934. doi: 10.1021/jp1115146
-
[21]
(21) Yue, Q.; Chang, S.; Kang, J.; Zhang, X.; Shao, Z.; Qin, S.; Li, J.J. Phys. Condes. Matter 2012, 24 (33), 335501. doi: 10.1088/0953-8984/24/33/335501
-
[22]
(22) Erdogan, E.; Popov, I. H.; Enyashin, A. N.; Seifert, G. Eur. Phys. J. B 2012, 85 (1), 33. doi: 10.1140/epjb/e2011-20456-7
-
[23]
(23) Shidpour, R.; Manteghian, M. Nanoscale 2010, 2 (8), 1429. doi: 10.1039/b9nr00368a
-
[24]
(24) Pan, H.; Zhang, Y.W. J. Mater. Chem. 2012, 22 (15), 7280. doi: 10.1039/c2jm15906f
-
[25]
(25) Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. J. Am. Chem. Soc.2008, 130 (49), 16739. doi: 10.1021/ja805545x
-
[26]
(26) Wen, X. D.; Zeng, T.; Teng, B. T.; Zhang, F. Q.; Li, Y.W.;Wang, H. G.; Jiao, H. J. J. Mol. Catal. A-Chem. 2006, 249 (1-2), 191. doi: 10.1016/j.molcata.2006.01.018
-
[27]
(27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865
-
[28]
(28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78 (7), 1396.
-
[29]
(29) Troullier, N.; Martins, J. Solid State Commun. 1990, 74 (7), 613.doi: 10.1016/0038-1098(90)90686-6
-
[30]
(30) Wu, M. S.; Xu, B.; Liu, G.; Ouyang, C. Y. Acta Phys. Sin. 2012,61, 227102. [吴木生, 徐波, 刘刚, 欧阳楚英. 物理学报,2012, 61, 227102.] doi: 10.7498/aps.61.227102
-
[31]
(31) Oviedo-Roa, R.; Martinez-Magadan, J. M.; Illas, F. J. Phys. Chem. B 2006, 110 (15), 7951. doi: 10.1021/jp052299j
-
[32]
(32) Ouyang, F. P.; Xu, H.;Wei, C. Acta Phys. Sin. 2008, 57, 1073.[欧阳方平, 徐慧, 魏辰. 物理学报, 2008, 57, 1073.]
-
[33]
(33) Chiu, C. H.; Chu, C. S. Phys. Rev. B 2012, 85 (15), 155444. doi: 10.1103/PhysRevB.85.155444
-
[34]
(34) Enoki, T. Epj. Web. Conf. 2012, 23, 00017. doi: 10.1051/epjconf/20122300017
-
[35]
(35) Barone, V.; Hod, O.; Scuseria, G. E. Nano Lett. 2006, 6 (12),2748. doi: 10.1021/nl0617033
-
[1]
-
-
[1]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[2]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[3]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[4]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[5]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[6]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[9]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[12]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[13]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[14]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[15]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[16]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[17]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[18]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[19]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[20]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[1]
Metrics
- PDF Downloads(1302)
- Abstract views(1072)
- HTML views(13)