Citation: MENG Xiu-Xia, NG Xun, YANG Nai-Tao, TAN Xiao-Yao, MA Zi-Feng. Preparation and Properties of Direct-Methane Solid Oxide Fuel Cell Based on a Graded Cu-CeO2-Ni-YSZ Composite Anode[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1719-1726. doi: 10.3866/PKU.WHXB201305151 shu

Preparation and Properties of Direct-Methane Solid Oxide Fuel Cell Based on a Graded Cu-CeO2-Ni-YSZ Composite Anode

  • Received Date: 6 February 2013
    Available Online: 15 May 2013

    Fund Project: 国家自然科学基金(21076118, 21173147) (21076118, 21173147)山东省优秀中青年科学家科研奖励基金(2010BSB01011)资助项目 (2010BSB01011)

  • A graded anode-supported solid oxide fuel cell (SOFC) with the structure porous Ni-yttria stabilized zirconia (Ni-YSZ)|microporous Ni-YSZ|YSZ|La0.8Sr0.2MnO3 (LSM) was fabricated by a trilayer co-pressing-sintering method, and coating with an LSM cathode. Cu-CeO2 was impregnated into the porous Ni-YSZ layer using nitrate/glycol precursors to act as an anti-carbon catalyst to fabricate a graded Cu-CeO2-NiO-YSZ composite anode. The current-voltage (I-V), current-power (I-P), and long-term stability of the SOFC were tested using CH4 or H2 as fuels and air as an oxidant. The results show that the co-pressing-sintering layers possess a gradient pore structure with defect-free combination. The power density of SOFC supported by a graded Ni-YSZ anode is 284 mW·cm-2, operated at 850℃ using H2 as a fuel, but decreases to 143 mW·cm-2 when the fuel is changed to CH4. In contrast, the cell supported by a Cu-CeO2-Ni-YSZ anode show the reverse behavior, increasing from 176 to 196 mW·cm-2 when the fuel is changed from H2 to CH4 at 850℃. Under a 250 mA·cm-2 load using CH4 as the fuel, the output of the cell with a graded Ni-YSZ anode fluctuats and the cell is blocked after 10 h. At this point, carbon particles or fibers are observed in the anode layer by scanning electron microscopy (SEM). Conversely, the cell with a Cu-CeO2-Ni-YSZ anode shows stable power output for 50 h or longer, and no carbon deposition was observed inside the anode.

  • 加载中
    1. [1]

      (1) Lawlor, V.; Griessera, S.; Buchingerd, G.; Olabi, A. G.;Cordiner, S.; Meissner, D. J. Power Sources 2009, 193, 387.doi: 10.1016/j.jpowsour.2009.02.085

    2. [2]

      (2) Suzuki, T.; Yamaguchi, T.; Fujishiro, Y.; Awano, M.J. Electrochem. Soc. 2006, 153, A925.

    3. [3]

      (3) Lee, T. J.; Kendall, K. J. Power Sources 2008, 181, 195. doi: 10.1016/j.jpowsour.2008.03.019

    4. [4]

      (4) rte, R. J.; Vohs, J. M. Current Opinion in Colloid & Interface Science 2009, 14, 236. doi: 10.1016/j.cocis.2009.04.006

    5. [5]

      (5) Zhan, Z. L.; Barnett, S. A. Science 2005, 308, 844. doi: 10.1126/science.1109213

    6. [6]

      (6) Kurokawa, H.; Sholklapper, T. Z.; Jacobson, C. P.; Jonghe, L. C.D.; Visco, S. J. Electrochem. Solid-State 2007, 10, B135.

    7. [7]

      (7) Resini, C.; Delgado, M. C. H.; Presto, S.; Alemany, L. J.; Riani,P.; Marazza, R.; Ramis, G.; Busca, G. Int. J. Hydrog. Energy2008, 33, 3728. doi: 10.1016/j.ijhydene.2008.04.044

    8. [8]

      (8) Huang, B.;Wang, S. R.; Liu, R. Z.;Wen, T. L. J. Power Sources2007, 167, 288. doi: 10.1016/j.jpowsour.2007.02.075

    9. [9]

      (9) Lee, S. I.; Ahn, K.; Vohs, J. M.; rte, R. J. Electrochem. Solid-State Lett. 2005, 8, A48.

    10. [10]

      (10) Lei, Z.; Zhu, Q. S.; Han, M. F. Acta Phys. -Chim. Sin. 2010, 26 (3), 583. [雷泽, 朱庆山, 韩敏芳. 物理化学学报, 2010, 26 (3), 583.] doi: 10.3866/PKU.WHXB20100323

    11. [11]

      (11) Jiang, S. P. Mater Sci Eng. A 2006, 418, 199. doi: 10.1016/j.msea.2005.11.052

    12. [12]

      (12) Ye, X. F.; Zhou, J.;Wang, S. R.; Zeng, F. R.;Wen, T. L.; Zhan,Z. L. Int. J. Hydrog. Energy 2012, 37, 505.

    13. [13]

      (13) Zhou, X.; Zhen, J.; Liu, L.; Li, X.; Zhang, N.; Sun, K. J. Power Sources 2012, 201, 128. doi: 10.1016/j.jpowsour.2011.10.129

    14. [14]

      (14) Tao, S.W.; Irvine, J. T. S. J. Electrochem. Soc. 2004, 151, A252.

    15. [15]

      (15) Fu, Q. X.; Tietz, F.; Stover, D. J. Electrochem. Soc. 2006, 153,D74.

    16. [16]

      (16) Haag, J. M.; Madsen, B. D.; Barnett, S. A. Electrochem. Solid-State Lett. 2008, 11, B51.

    17. [17]

      (17) Kim, G.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; rte, R. J.Electrochem. Solid-State Lett. 2008, 11, B16.

    18. [18]

      (18) Ye, X. F.;Wang, S. R.; Hu, Q.; Chen, J. Y.;Wen, T. L.;Wen, Z.Y. Solid State Ionics 2009, 180, 276. doi: 10.1016/j.ssi.2008.11.010

    19. [19]

      (19) Ye, X.;Wang, S. R.; Hu, Q.;Wang, Z. R.;Wen, T. L.,Wen, Z. Y.Electrochem. Commun. 2009, 11, 823. doi: 10.1016/j.elecom.2009.02.003

    20. [20]

      (20) Ye, X. F.; Huang, B.;Wang, S. R.;Wang, Z. R.; Xiong, L.;Wen,T. L. J. Power Sources 2007, 164, 203. doi: 10.1016/j.jpowsour.2006.10.056

    21. [21]

      (21) Zhao, F.; Virkar, A. V. J. Power Sources 2005, 141, 79. doi: 10.1016/j.jpowsour.2004.08.057

    22. [22]

      (22) Zong,W. Z.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26 (4),827. [宗卫正, 朱永法. 物理化学学报, 2010, 26 (4), 827.]doi: 10.3866/PKU.WHXB20100443

    23. [23]

      (23) Li, Q.; Zhao,H.; Jiang, R.; Guo, L. F. Acta Phys. -Chim. Sin.2012, 28 (9), 2065. [李强, 赵辉, 江瑞, 郭力帆. 物理化学学报, 2012, 28 (9), 2065.] doi: 10.3866/PKU.WHXB201206272

    24. [24]

      (24) Yang, N. T.; Tan, X.; Meng, X. X.; Yin, Y.; Ma, Z. F. ECS Transaction 2009, 25 (2), 811.

    25. [25]

      (25) Lin, Y.; Zhan, Z.; Liu, J.; Barnett, S. A. Solid State Ionics 2005,176, 1827. doi: 10.1016/j.ssi.2005.05.008

    26. [26]

      (26) Liu, J.; Barnett, S. A. Solid State Ionics 2003, 158, 11. doi: 10.1016/S0167-2738(02)00769-5

    27. [27]

      (27) Kishimoto, H.; Yamaji, K.; Horita, T.; Xiong, Y. P.; Sakai, N.;Brito, M. E.; Yokokawa, H. Electrochem. Soc. 2006, 153 (6),982. doi: 10.1149/1.2186790

    28. [28]

      (28) Pillaia, M.; Lin, Y.; Zhu, H.; Kee, R. J.; Barnett, S. A. J. Power Sources 2010, 195, 271. doi: 10.1016/j.jpowsour.2009.05.032

    29. [29]

      (29) Lin, Y.; Zhan, Z.; Barnett, S. A. J. Power Sources 2006, 158,1313. doi: 10.1016/j.jpowsour.2005.09.060

    30. [30]

      (30) Fisher, J. C.; Chuang, S. S. C. Catal. Commun. 2009, 10, 772.doi: 10.1016/j.catcom.2008.11.035

    31. [31]

      (31) Sariboga, V.; Oksuzomer, F. Applied Energy 2012, 93, 707. doi: 10.1016/j.apenergy.2012.01.003


  • 加载中
    1. [1]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    19. [19]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    20. [20]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

Metrics
  • PDF Downloads(725)
  • Abstract views(1024)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return