Citation: KANG Ya-Rong, CHEN Fu-Yi. Synthesis and Application of Ag-Cu Bimetallic Dendrites[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1712-1718. doi: 10.3866/PKU.WHXB201305132 shu

Synthesis and Application of Ag-Cu Bimetallic Dendrites

  • Received Date: 14 March 2013
    Available Online: 13 May 2013

    Fund Project: 国家自然科学基金(51271148, 50971100) (51271148, 50971100) 凝固技术国家重点实验室自主研究课题(30-TP-2009) (30-TP-2009)航空科学基金(2012ZF53073)资助项目 (2012ZF53073)

  • We synthesized silver-copper (Ag-Cu) dendritic structures on Cu foil by electrodeposition and subsequent galvanic displacement reaction. The crystalline nature and morphology of the nanostructures were examined by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The morphology of the Cu precursor changed from rod to dendrite, and finally grew into foam as the overpotential was increased. When the Cu precursor was reacted with silver nitrate through galvanic displacement reaction, a foam-like precursor produced a denser, more uniform Ag-Cu dendrite. In addition, the concentration of silver nitrate solution had a considerable effect on the shape of the nanoparticles, with increasing concentration within a certain range promoting dendrite formation. The electrochemical properties of the Ag-Cu dendrite-modified electrode were characterized by linear sweep voltammetry and amperometric current-time curves. The reduction peak potential was about -0.25 V (vs a saturated calomel electrode (SCE)) in the electrolyte solution, which indicates that the as-synthesized Ag-Cu dendrites have favorable electroreduction activity towards hydrogen peroxide (H2O2). When an Ag-Cu dendrite was used as a sensor, the electrode exhibited a rapid response time of 3 s, a wide linear range of 0.1-12 mmol·L-1 H2O2, and a remarkable sensitivity of 330.36 μA·(mmol·L-1)-1·cm-2, which is particularly important to improve the accuracy of sensors.

  • 加载中
    1. [1]

      (1) Hartley, F. R. Chemistry of Platinum Group Metals: Recent Developments, 1st ed.; Elsevier Science Ltd.: London, 1991;pp 106-120.

    2. [2]

      (2) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26 (6), 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26 (6), 1570.]doi: 10.3866/PKU.WHXB20100620

    3. [3]

      (3) Ye, S. F.; Hu, X. M.; Ying, D.; Zhang, Y. Environmental Chemistry 2011, 30, 1711. [叶舒帆, 胡筱敏, 英滇, 张杨.环境化学, 2011, 30, 1711.]

    4. [4]

      (4) Li,W. B.; ng, H. Acta Phys. -Chim. Sin. 2010, 26 (4), 885.[黎维彬, 龚浩. 物理化学学报, 2010, 26 (4), 885.]doi: 10.3866/PKU.WHXB20100436

    5. [5]

      (5) Ming, C. B.; Ye, D. Q.; Yi, H.; Fu, M. L. China Environmental Science 2009, 29, 924. [明彩兵, 叶代启, 易慧, 付名利.中国环境科学, 2009, 29, 924.]

    6. [6]

      (6) Jirkovský, J. S.; Panas, I.; Romani, S.; Ahlberg, E.; Schiffrin, D.J. J. Phys. Chem. Lett. 2012, 3, 315.

    7. [7]

      (7) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.doi: 10.1038/nature11008

    8. [8]

      (8) Sun, X. Z.; Lin, L. H.; Li, Z. C.; Zhang, Z. J.; Feng, J. Y. Mater. Lett. 2009, 63, 2306. doi: 10.1016/j.matlet.2009.07.058

    9. [9]

      (9) Li, L. F.; Qiu, T.; Yang, J.; Feng, Y. B.; Zhang, Z. Z. Rare Metal Materials and Engineering 2010, 39, 902. [李良锋, 丘泰,杨建, 冯永宝, 张振忠. 稀有金属材料与工程, 2010, 39,902.]

    10. [10]

      (10) Li, Z. Q.; Shen, H.; Chen, L. Chinese Journal of Materials Research 1994, 8, 392. [李宗全, 沈辉, 陈莉. 材料研究学报, 1994, 8, 392.]

    11. [11]

      (11) Agrawal, V. V.; Mahalakshmi, P.; Kulkarni, G. U.; Rao, C. N. R.Langmuir 2006, 22, 1846. doi: 10.1021/la052595n

    12. [12]

      (12) Zhang, C. M.; Zhang, C. L.; Zhang, J.W.; Zhang, Z. J. Acta Phys. -Chim. Sin. 2004, 20 (5), 554. [张晟卯, 张春丽, 张经纬, 张治军. 物理化学学报, 2004, 20 (5), 554.] doi: 10.3866/PKU.WHXB20040522

    13. [13]

      (13) Hu, X. Y.;Wang, Z. Y.; Zhang, T. C.; Zeng, X. Y.; Xu,W.;Zhang, J. X.; Yan, J.; Zhang, J. P.; Zhang, L. D. Appl. Surf. Sci.2008, 254, 3845. doi: 10.1016/j.apsusc.2007.12.006

    14. [14]

      (14) Bartlettet, P. N.; Birkin, P. R.;Wang, J. H.; Palmisano, F.;Benedetto, G. D. Anal. Chem. 1998, 70, 3685. doi: 10.1021/ac971088a

    15. [15]

      (15) Wang, J.; Lin, Y. H.; Chen, L. Analyst 1993, 118, 277.doi: 10.1039/an9931800277

    16. [16]

      (16) Demirci, U. B. J. Power Sources 2007, 172, 676. doi: 10.1016/j.jpowsour.2007.05.009

    17. [17]

      (17) Zhao, B.; Liu, Z. R.; Liu, Z. l.; Liu, G. X.; Li, Z.;Wang, J. X.;Dong, X. T. Electrochem. Commun. 2009, 11, 1707.doi: 10.1016/j.elecom.2009.06.035

    18. [18]

      (18) de Lara nzález, G. L.; Kahlert, H.; Scholz, F. Electrochim. Acta 2007, 52 (5), 1968. doi: 10.1016/j.electacta.2006.08.006

    19. [19]

      (19) Rodríguez-López, J. N.; Lowe, D. J.; Hernández-Ruiz, J.; Hiner,A. N. P.; García-Cánovas, F.; Thorneley, R. N. F. J. Am. Chem. Soc. 2001, 123, 11838. doi: 10.1021/ja011853+

    20. [20]

      (20) Zhun, L. Q. Theory and Technology of the Functional Film Layer Electrodeposition; University of Aeronautics andAstronautics of Beijing Press: Beijing, 2005; pp 24-34.[朱立群. 功能膜层的电沉积理论和技术. 北京: 北京航空航天大学出版社, 2005: 24-34.]

    21. [21]

      (21) Liu, R.; Sen, A. Chem. Mater. 2011, 24 (1), 48. doi: 10.1021/cm2017714

    22. [22]

      (22) Qin, X.; Miao, Z. Y.; Fang, Y. X.; Zhang, D.; Ma, J.; Zhang, L.;Chen, Q.; Shao, X. G. Langmuir 2012, 28, 5218. doi: 10.1021/la300311v

    23. [23]

      (23) Qiu, R.; Cha, H. G.; Noh, H. B.; Shim, Y. B.; Zhang, X. L.;Qiao, R.; Zhang, D.; Kim, Y., II; Pal, U.; Kang, Y. S. J. Phys. Chem. C 2009, 113, 15891. doi: 10.1021/jp904222b

    24. [24]

      (24) Wei, G. D.; Nan, C.W.; Deng, Y.; Lin, Y. H. Chem. Mater. 2003,15 (23), 4436. doi: 10.1021/cm034628v

    25. [25]

      (25) Gu, M.; Yang, F. Z.; Huang, L.; Yao, S. B.; Zhou, S. M. Acta Phys. -Chim. Sin. 2002, 18 (11), 973. [辜敏, 杨防祖,黄令, 姚士冰, 周绍民. 物理化学学报, 2002, 18 (11), 973.]doi: 10.3866/PKU.WHXB20021103

    26. [26]

      (26) Chen, X.; Cui, C. H.; Guo, Z.; Liu, J. H.; Huang, X. J.; Yu, S. H.Small 2011, 7, 858. doi: 10.1002/smll.201002331

    27. [27]

      (27) Welch, C. M.; Banks C. E.; Simm, A. O.; Compton, R. G. Anal. Bioanal. Chem. 2005, 382, 12. doi: 10.1007/s00216-005-3205-5

    28. [28]

      (28) Wu, S.; Zhao, H. T.; Ju, H. X.; Shi, C. G.; Zhao, J.W.Electrochem. Commun. 2006, 8, 1197. doi: 10.1016/j.elecom.2006.05.013

    29. [29]

      (29) Liu, J.; Chen, F. Y.; Zhang, J. Y.; Fan, L. H.; Zhang, J. S.Chinese Journal of Materials Research 2012, 26, 49. [刘婧,陈福义, 张吉烨, 樊丽红, 张金生. 材料研究学报, 2012, 26,49.]

    30. [30]

      (30) Zhao, X. H.; Chen, F. Y.; Liu, J. Precious Metals 2012, 33 (1),21. [赵秀华, 陈福义, 刘婧. 贵金属, 2012, 33 (1), 21.]

    31. [31]

      (31) Huang, J. S.;Wang, D.W.; Hou, H. Q.; You, T. Y. Adv. Funct. Mater. 2008, 18, 441. doi: 10.1002/adfm.200700729

    32. [32]

      (32) Shi, L.; Liu, X. Q.; Niu,W. X.; Li, H. J.; Han, S.; Chen, J.; Xu,G. G. Biosens. Bioelectron. 2009, 24, 1159. doi: 10.1016/j.bios.2008.07.001

    33. [33]

      (33) Qin, X.;Wang, H. C.;Wang, X. S.; Miao, Z. Y.; Fang, Y. X.;Chen, Q.; Shao, X. G. Electrochim. Acta 2011, 56 (9), 3170.doi: 10.1016/j.electacta.2011.01.058


  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(1121)
  • Abstract views(984)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return