Citation: LIN Xue, YU Li-Li, Yan Li-Na, GUAN Qing-Feng, Yan Yong-Sheng, ZHAO Han. Controllable Synthesis and Photocatalytic Activity of Spherical, Flowerlike and Threadlike Bismuth Vanadates[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1771-1777. doi: 10.3866/PKU.WHXB201305131
-
Spherical, flowerlike, and threadlike bismuth vanadates (BiVO4) were synthesized via a controllable hydrothermal method without using any surfactant or template. The optical and photocatalytic properties of the BiVO4 samples were investigated. The phase structures of the BiVO4 samples were observed by X-ray diffraction (XRD), which indicated that the as-prepared samples possessed monoclinic cells. Transmission electron microscope (TEM) observations showed that BiVO4 crystals with different morphologies were fabricated simply by manipulating the parameters of the hydrothermal reaction. On the basis of the structural analysis of samples obtained under different conditions, a possible mechanism for the formation of these distinct morphologies was proposed. UV-visible diffuse reflectance spectra (UV-Vis DRS) of the samples revealed that the band gaps of the BiVO4 photocatalysts were about 2.19-2.33 eV. The as-prepared BiVO4 photocatalysts exhibited higher photocatalytic activities toward the degradation of rhodamine B (RhB) under visible light irradiation (λ>420 nm) than commercial P25 TiO2 and traditional N-doped TiO2 (N-TiO2). Spherical BiVO4 showed the highest photocatalytic activity of the samples, decolorizing up to 100% of RhB upon visible light irradiation for 180 min. The reason for the different photocatalytic activities of the BiVO4 samples fabricated at different pH was systematically studied by considering their structure and morphology.
-
-
[1]
(1) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘,彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.]doi: 10.3866/PKU.WHXB20081123
-
[2]
(2) Mao, Y. B.;Wong, S. S. J. Am. Chem. Soc. 2006, 128, 8217.doi: 10.1021/ja0607483
-
[3]
(3) Li, B. X.;Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011,27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报,2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946
-
[4]
(4) Zhang, L. S.;Wang, H. L.; Chen, Z. G.;Wong, P. K.; Liu, J. S.Appl. Catal. B: Environ. 2011, 106, 1.
-
[5]
(5) Grasset, F.; Starukh, G.; Spanhel, L.; Ababou-Girard, S.; Su, D.S.; Klein, A. Adv. Mater. 2005, 17, 294.
-
[6]
(6) Grasset, F.; Spanhel, L.; Ababou-Girard, S. Superlattice Microst. 2005, 38, 300. doi: 10.1016/j.spmi.2005.08.023
-
[7]
(7) Yao,W. F.;Wang, H.; Xu, X. H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X. Appl. Catal. A: Gen. 2004, 259, 29.doi: 10.1016/j.apcata.2003.09.004
-
[8]
(8) Yao,W. F.; Xu, X. H.;Wang, H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B: Environ.2004, 52, 109. doi: 10.1016/j.apcatb.2004.04.002
-
[9]
(9) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang,M. H.; Whangbo, M. H. Catal. Commun. 2009, 11, 210.doi: 10.1016/j.catcom.2009.10.010
-
[10]
(10) Zhang, Z. J.;Wang,W. Z.; Shang, M.; Yin,W. Z. Catal. Commun. 2010, 11, 982. doi: 10.1016/j.catcom.2010.04.013
-
[11]
(11) Zhang, L.W.;Wang, Y. J.; Cheng, H. Y.; Yao,W. Q.; Zhu, Y. F.Adv. Mater. 2009, 21, 1286. doi: 10.1002/adma.v21:12
-
[12]
(12) Zhuo, Y. Q.; Huang, J. F.; Cao, L. Y.; Ouyang, H. B.;Wu, J. P.Mater. Lett. 2013, 90, 107. doi: 10.1016/j.matlet.2012.09.009
-
[13]
(13) Tian, G. H.; Chen,Y. J.; Meng, X. Y.; Zhou, J.; Zhou,W.; Pan,K.; Tian, C. G.; Ren, Z. Y.; Fu, H. G. ChemPlusChem 2013, 78,117. doi: 10.1002/cplu.201200198
-
[14]
(14) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53,229. doi: 10.1023/A:1019034728816
-
[15]
(15) Zhou, L.;Wang,W.; Liu, S.; Zhang, L.; Xu, H.; Zhu,W. J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052
-
[16]
(16) Tokunaga, S.; Kato, H.; Kudo, A. Chem. Mater. 2001, 13, 4624.doi: 10.1021/cm0103390
-
[17]
(17) Liu, J. B.;Wang, H.;Wang, S.; Yan, H. Mater. Sci. Eng. B 2003,104, 36. doi: 10.1016/S0921-5107(03)00264-2
-
[18]
(18) Sun, Y.;Wu, C.; Long, R.; Cui, Y.; Zhang, S.; Xie, Y. Chem. Cummun. 2009, 4542.
-
[19]
(19) Sun, Y.; Xie, Y.;Wu, C.; Long, R. Cryst. Growth Des. 2010, 10,602. doi: 10.1021/cg900988j
-
[20]
(20) Shang, M.;Wang,W.; Sun, S.; Ren, J.; Zhou, L.; Zhang, L.J. Phys. Chem. C 2009, 113, 20228. doi: 10.1021/jp9067729
-
[21]
(21) Su, J.; Guo, L.; Yoriya, S.; Grimes, C. A. Cryst. Growth Des.2010, 10, 856. doi: 10.1021/cg9012125
-
[22]
(22) Yu, J.; Kudo, A. Chem. Lett. 2005, 34, 850. doi: 10.1246/cl.2005.850
-
[23]
(23) Xi, G.; Ye, J. Chem. Commun. 2010, 46, 1893. doi: 10.1039/b923435g
-
[24]
(24) Zhang, L.; Chen, D.; Jiao, X. J. Phys. Chem. B 2006, 110, 2668.doi: 10.1021/jp056367d
-
[25]
(25) Zhao, Y.; Xie, Y.; Zhu, X.; Yan, S.;Wang, S. Chem. Eur. J. 2008,14, 1601.
-
[26]
(26) Hou, Y. D.;Wang, X. C.;Wu, L.; Chen, X. F.; Ding, Z. X.;Wang, X. X.; Fu, X. Z. Chemosphere 2008, 72, 414.doi: 10.1016/j.chemosphere.2008.02.035
-
[27]
(27) Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, L. L.; Lang, J. H.;Gao, M. J. Alloy. Compd. 2009, 481, 628. doi: 10.1016/j.jallcom.2009.03.108
-
[28]
(28) Kudo, A.; Tsuji, I.; Kato, H. Chem. Commun. 2002, 48, 1958.
-
[29]
(29) Xu, D.; Gao, A. M.; Deng,W. L. Acta Phys. -Chim. Sin. 2008,24 (7), 1219. [许迪, 高爱梅, 邓文礼. 物理化学学报, 2008,24 (7), 1219.] doi: 10.3866/PKU.WHXB20080717
-
[30]
(30) Wang, D. G.; Li, R. G.; Zhu, J.; Shi, J. Y.; Han, J. F.; Zong, X.;Li, C. J. Phys. Chem. C 2012, 116, 5082. doi: 10.1021/jp210584b
-
[31]
(31) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue,C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b
-
[32]
(32) Zhang, L.W.; Xu, T. G.; Zhao, X.; Zhu, Y. F. Appl. Catal. B: Environ. 2010, 98, 138. doi: 10.1016/j.apcatb.2010.05.022
-
[33]
(33) Wang, X.; Chen, G.; Zhou, C.; Yu, Y. G.;Wang, G. Eur. J. Inorg. Chem. 2012, 1742.
-
[34]
(34) Li, G. S.; Zhang, D. Q.; Yu, J. C. Chem. Mater. 2008, 20, 3983.doi: 10.1021/cm800236z
-
[35]
(35) Wetchakun, N.; Chaiwichain, S.; Inceesungvorn, B.; Pingmuang,K.; Phanichphant, S.; Minett, A. I.; Chen, J. ACS Appl. Mater. Interfaces 2012, 4, 3718. doi: 10.1021/am300812n
-
[36]
(36) Ke, D. N.; Peng, T. Y.; Ma, L.; Cai, P.; Dai, K. Inorg. Chem.2009, 48, 4685. doi: 10.1021/ic900064m
-
[37]
(37) García, J.; López, T.; Álvarez, M.; Aguilar, H.; Quintana, P. J.NonCryst. Solids 2008, 354, 729. doi: 10.1016/j.jnoncrysol.2007.07.074
-
[38]
(38) Kanagadurai, R.; Sankar, R.; Sivanesan, G.; Srinivasan, S.;Rajasekaran, R.; Jayavel, R. Mater. Chem. Phys. 2008, 108,170. doi: 10.1016/j.matchemphys.2007.09.041
-
[39]
(39) tic, M.; Music, S.; Ivanda, M.; Šoufek, M.; Popovic, S.J. Mol. Struct. 2005, 744, 535. doi: 10.1016/j.molstruc.2004.10.075
-
[40]
(40) Ge, M.; Liu, L.; Chen,W.; Zhou, Z. CrysEngComm 2012, 14,1038. doi: 10.1039/c1ce06264f
-
[41]
(41) Fan, H. M.; Jiang, T. F.;Wang, D. J.;Wang, L. L.; Zhai, J. L.;He, D. Q.;Wang, P.; Xie, T. F. J. Phys. Chem. C 2012, 116,2425. doi: 10.1021/jp206798d
-
[1]
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[2]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[3]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[5]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[6]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[7]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[8]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[9]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[10]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[11]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[12]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[13]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[14]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[15]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[16]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[17]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[20]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[1]
Metrics
- PDF Downloads(804)
- Abstract views(1120)
- HTML views(37)