Citation: YU Zhan-Jiang, CHEN Yong-Qiang, YANG Xiao-Da. Effective Adsorption of Functional Biological Macromolecules on Stainless Steel Surface with Micro/Nanoporous Texture[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1595-1602. doi: 10.3866/PKU.WHXB201305082 shu

Effective Adsorption of Functional Biological Macromolecules on Stainless Steel Surface with Micro/Nanoporous Texture

  • Received Date: 4 March 2013
    Available Online: 8 May 2013

    Fund Project: 国家自然科学基金(30770581, 20971008) (30770581, 20971008)高等学校博士学科点专项科研基金(20090001110068)资助项目 (20090001110068)

  • Stainless steel (AISI 316L) is commonly used as a material in medical devices. Modification of the metal surface with bioactive molecules and/or nanoparticles to develop next-generation smart biomaterial, e.g., cardiovascular stents, has recently attracted great attention. The present work investigated adsorption of antibodies and enzymes on micro/nanoporous 316L stainless steel compared with that on smooth and ld-coated stainless steel surfaces. The experimental results showed that the micro/nanoporous stainless steel surface produced by electrochemical erosion can adsorb a large amount of proteins (antibodies or horse radish peroxidase (HRP)), with comparable or better results than the sputtered- ld surface. Washes with surfactants (e.g., 10% bull serum albumin (BSA) or 0.2% Tween 20 solution) did not remove the enzymes/antibodies. In contrast, pretreatment of the metal plates with 5% Tween 20 halved antibody adsorption but did not affect adsorption of HRP. The wettability of the porous metal surface coated with proteins depended on the protein species and amount of protein adsorbed. The protein-coated porous surface was hydrophilic (water contact angle<50°), which should make it biocompatible. The proteins on the micro/nanoporous stainless steel surface retained their high biological activity; in particular, micro/nanoporous stainless steel stents modified with an anti-CD34 antibody using the present method can effectively and selectively capture KG-1 cells. Our work provides a basis for developing novel polymer-free, smart, economic biomaterials with stainless steel for biomedical applications.

  • 加载中
    1. [1]

      (1) Holzapfel, B. M.; Reichert, J. C.; Schantz, J. T.; Gbureck, U.;Rackwitz, L.; Noth, U.; Jakob, F.; Rudert, M.; Groll, J.;Hutmacher, D.W. Adv. Drug Deliv. Rev. 2013, 65, 581. doi: 10.1016/j.addr.2012.07.009

    2. [2]

      (2) Nagarajan, S.; Mohana, M.; Sudhagar, P.; Raman, V.;Nishimura, T.; Kim, S.; Kang, Y. S.; Rajendran, N. ACS Appl. Mater. Interfaces 2012, 4, 5134.

    3. [3]

      (3) Abdel-Fattah, T. M.; Loftis, D.; Mahapatro, A. J. Biomed. Nanotechnol. 2011, 7, 794. doi: 10.1166/jbn.2011.1346

    4. [4]

      (4) Hayes, J. S.; Richards, R. G. Expert. Rev. Med. Devices 2010, 7,843. doi: 10.1586/erd.10.53

    5. [5]

      (5) Weckbach, S.; Losacco, J. T.; Hahnhaussen, J.; Gebhard, F.;Stahel, P. F. Unfallchirurg 2012, 115, 75. doi: 10.1007/s00113-011-2145-0

    6. [6]

      (6) Joung, Y. K.; You, S. S.; Park, K. M.; , D. H.; Park, K. D.Colloids Surf. B: Biointerfaces 2012, 99, 102. doi: 10.1016/j.colsurfb.2011.10.047

    7. [7]

      (7) Slaney, A. M.;Wright, V. A.; Meloncelli, P. J.; Harris, K. D.;West, L. J.; Lowary, T. L.; Buriak, J. M. ACS Appl. Mater. Interfaces 2011, 3, 1601. doi: 10.1021/am200158y

    8. [8]

      (8) Lionetto, S.; Little, A.; Moriceau, G.; Heymann, D.; Decurtins,M.; Plecko, M.; Filgueira, L.; Cadosch, D. J. Biomed. Mater. Res. A 2013, 101, 991.

    9. [9]

      (9) Yang, Z.; Tu, Q.; Zhu, Y.; Luo, R.; Li, X.; Xie, Y.; Maitz, M. F.;Wang, J.; Huang, N. Adv. Healthc. Mater. 2012, 1, 548. doi: 10.1002/adhm.201200073

    10. [10]

      (10) Kang, C. K.; Lim,W. H.; Kyeong, S.; Choe,W. S.; Kim, H. S.;Jun, B. H.; Lee, Y. S. Colloids Surf. B: Biointerfaces 2013, 102,744. doi: 10.1016/j.colsurfb.2012.09.008

    11. [11]

      (11) Caro, A.; Humblot, V.; Methivier, C.; Minier, M.; Salmain, M.;Pradier, C. M. J. Phys. Chem. B 2009, 113, 2101. doi: 10.1021/jp805284s

    12. [12]

      (12) Kang, C. K.; Lee, Y. S. J. Mater. Sci. Mater. Med. 2007, 18,1389. doi: 10.1007/s10856-006-0079-9

    13. [13]

      (13) Ceylan, H.; Tekinay, A. B.; Guler, M. O. Biomaterials 2011, 32,8797. doi: 10.1016/j.biomaterials.2011.08.018

    14. [14]

      (14) Davis, E. M.; Li, D. Y.; Irvin, R. T. Biomaterials 2011, 32, 5311.doi: 10.1016/j.biomaterials.2011.04.027

    15. [15]

      (15) Ignatova, M.; Voccia, S.; Gabriel, S.; Gilbert, B.; Cossement,D.; Jerome, R.; Jerome, C. Langmuir 2009, 25, 891. doi: 10.1021/la802472e

    16. [16]

      (16) Imamura, K.; Kawasaki, Y.; Awadzu, T.; Sakiyama, T.;Nakanishi, K. J. Colloid Interface Sci. 2003, 267, 294. doi: 10.1016/S0021-9797(03)00700-8

    17. [17]

      (17) Falentin-Daudre, C.; Faure, E.; Svaldo-Lanero, T.; Farina, F.;Jerome, C.; Van DeWeerdt, C.; Martial, J.; Duwez, A. S.;Detrembleur, C. Langmuir 2012, 28, 7233. doi: 10.1021/la3003965

    18. [18]

      (18) Harvey, J.; Bergdahl, A.; Dadafarin, H.; Ling, L.; Davis, E. C.;Omanovic, S. Biotechnol. Lett. 2012, 34, 1159. doi: 10.1007/s10529-012-0885-8

    19. [19]

      (19) Secker, T. J.; Herve, R.; Zhao, Q.; Borisenko, K. B.; Abel, E.W.; Keevil, C.W. Biofouling 2012, 28, 563. doi: 10.1080/08927014.2012.698387

    20. [20]

      (20) Horia, N.; Iwasaa, F.; Uenoa, T.; Takeuchib, K.; Tsukimuraa, N.;Yamadaa, M.; Hattorib, M.; Yamamotoc, A.; Ogawaa, T. Dental Materials 2010, 26, 275. doi: 10.1016/j.dental.2009.11.077

    21. [21]

      (21) Subramanian, B.; Ananthakumar, R.; Kobayashi, A.;Jayachandran, M. J. Mater. Sci. Mater. Med. 2012, 23, 329. doi: 10.1007/s10856-011-4500-7

    22. [22]

      (22) Subramanian, B.; Dhandapani, P.; Maruthamuthu, S.;Jayachandran, M. J. Biomater. Appl. 2012, 26, 687. doi: 10.1177/0885328210377534

    23. [23]

      (23) Valanezahad, A.; Ishikawa, K.; Tsuru, K.; Maruta, M.; Matsuya,S. Dent. Mater. J. 2011, 30, 749. doi: 10.4012/dmj.2010-153

    24. [24]

      (24) Buhagiar, J.; Bell, T.; Sammons, R.; Dong, H. J. Mater. Sci. Mater. Med. 2011, 22, 1269.

    25. [25]

      (25) Wendel, H. P.; Avci-Adali, M.; Ziemer, G. Int. J. Cardiol. 2010,145, 115. doi: 10.1016/j.ijcard.2009.06.020

    26. [26]

      (26) Granada, J. F.; Inami, S.; Aboodi, M. S.; Tellez, A.; Milewski,K.;Wallace-Bradley, D.; Parker, S.; Rowland, S.; Nakazawa,G.; Vorpahl, M.; Kolodgie, F. D.; Kaluza, G. L.; Leon, M. B.;Virmani, R. Circ. Cardiovasc. Interv. 2010, 3, 257. doi: 10.1161/CIRCINTERVENTIONS.109.919936

    27. [27]

      (27) McGuigan, A. P.; Sefton, M. V. Biomaterials 2007, 28, 2547.doi: 10.1016/j.biomaterials.2007.01.039

    28. [28]

      (28) Rossi, M. L.; Zavalloni, D.; Gasparini, G. L.; Man , R.; Belli,G.; Presbitero, P. Int. J. Cardiol. 2010, 141, e20.

    29. [29]

      (29) Le Guehennec, L.; Martin, F.; Lopez-Heredia, M. A.; Louarn,G.; Amouriq, Y.; Cousty, J.; Layrolle, P. Nanomedicine 2008, 3,61. doi: 10.2217/17435889.3.1.61

    30. [30]

      (30) Pan, H. A.; Liang, J. Y.; Hung, Y. C.; Lee, C. H.; Chiou, J. C.;Huang, G. S. Biomaterials 2013, 34, 841. doi: 10.1016/j.biomaterials.2012.09.078

    31. [31]

      (31) Ranellaa, A.; Barberogloua, M.; Bakogiannia, S.; Fotakisa, C.;Stratakisa, E. Acta Biomaterialia 2010, 6, 2711. doi: 10.1016/j.actbio.2010.01.016

    32. [32]

      (32) Nayak, B. K.; Gupta, M. C. Optics and Lasers in Engineering2010, 48, 940. doi: 10.1016/j.optlaseng.2010.04.010

    33. [33]

      (33) Fukuzaki, S.; Urano, H.; Nagata, K. J. Ferment. Bioeng. 1995,80, 6. doi: 10.1016/0922-338X(95)98168-K

    34. [34]

      (34) Bee, J. S.; Chiu, D.; Sawicki, S.; Stevenson, J. L.; Chatterjee,K.; Freund, E.; Carpenter, J. F.; Randolph, T.W. J. Pharm. Sci.2009, 98, 3218.

    35. [35]

      (35) Sakiyama, T.; Aya, A.; Embutsu, M.; Imamura, K.; Nakanishi,K. J. Biosci. Bioeng. 2006, 101, 434. doi: 10.1263/jbb.101.434

    36. [36]

      (36) Hagiwara, T.; Sakiyama, T.;Watanabe, H. Langmuir 2009, 25,226.

    37. [37]

      (37) He, C. X.; Yuan, A. P.; Zhang, Q. L.; Ren, X. Z.; Li, C. H.; Liu,J. H. Acta Phys. -Chim. Sin. 2012, 28, 2721. [何传新, 袁安朋,张黔玲, 任祥忠, 李翠华, 刘剑洪. 物理化学学报, 2012, 28,2721.] doi: 10.3866/PKU.WHXB201207191

    38. [38]

      (38) Zhang, F.; Guo,W.; Yu, Z.;Wang, Y. C. Chin. J. Pharm. Anal.2011, 31, 862.

    39. [39]

      (39) Berry, J. L.; Santamarina, A.; Moore, J. E., Jr.; Roychowdhury,S.; Routh,W. D. Ann. Biomed. Eng. 2000, 28, 386. doi: 10.1114/1.276

    40. [40]

      (40) Hao, L.; Lawrence, J. Proc. Inst. Mech. Eng. H 2006, 220, 47.doi: 10.1243/095441105X68999

    41. [41]

      (41) Mikulewicz, M.; Chojnacka, K. Biol. Trace. Elem. Res. 2011,142, 865. doi: 10.1007/s12011-010-8798-7

    42. [42]

      (42) Matsumura, H.; Saburi, M. Colloids Surf. B: Biointerfaces 2006,47, 146. doi: 10.1016/j.colsurfb.2005.12.004

    43. [43]

      (43) Mourtas, S.; Kastellorizios, M.; Klepetsanis, P.; Farsari, E.;Amanatides, E.; Mataras, D.; Pistillo, B. R.; Favia, P.; Sardella,E.; d'A stino, R.; Antimisiaris, S. G. Colloids Surf. B: Biointerfaces 2011, 84, 214. doi: 10.1016/j.colsurfb.2011.01.002

    44. [44]

      (44) Muller, R.; Abke, J.; Schnell, E.; Macionczyk, F.; Gbureck, U.;Mehrl, R.; Ruszczak, Z.; Kujat, R.; Englert, C.; Nerlich, M.;Angele, P. Biomaterials 2005, 26, 6962. doi: 10.1016/j.biomaterials.2005.05.013

    45. [45]

      (45) Liu, P.; Xing, G.W.; Li, X.W.; Ye, Y. H. Acta Phys. -Chim. Sin.2010, 26, 1113. [刘平, 邢国文, 李宣文, 叶蕴华. 物理化学学报, 2010, 26, 1113.] doi: 10.3866/PKU.WHXB20100448

    46. [46]

      (46) Omanovic, S.; Roscoe, S. G. J. Colloid Interface Sci. 2000, 227,452. doi: 10.1006/jcis.2000.6913

    47. [47]

      (47) Bee, J. S.; Davis, M.; Freund, E.; Carpenter, J. F.; Randolph, T.W. Biotechnol. Bioeng. 2010, 105, 121. doi: 10.1002/bit.v105:1

    48. [48]

      (48) Hedberg, Y. S.; Killian, M. S.; Blomberg, E.; Virtanen, S.;Schmuki, P.; OdnevallWallinder, I. Langmuir 2012, 28, 16306.doi: 10.1021/la3039279

    49. [49]

      (49) Desroches, M. J.; Omanovic, S. Phys. Chem. Chem. Phys. 2008,10, 2502. doi: 10.1039/b719371h


  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(809)
  • Abstract views(900)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return