Citation:
ZHU Qi-Rong, LI Hui-Qin, LI Ning, CHAI Jing, GAO Run-Gang, LIANG Qi. Nanotribological and Wear Properties of Graphene[J]. Acta Physico-Chimica Sinica,
;2013, 29(07): 1582-1587.
doi:
10.3866/PKU.WHXB201305031
-
We prepared few-layer graphene samples by liquid-phase exfoliation in ethanol. By controlling the solvent temperature, sonication time and power, and centrifugation speed and time, we fabricated several-layer graphene from highly oriented pyrolytic graphite (HOPG). The obtained supernatant was added dropwise onto freshly cleaved mica surfaces. Nanotribological study of the samples under high vacuum by atomic force microscope (AFM) showed that frictional force decreased as the number of monolayers (ML) of graphene increased, and their frictional coefficient remained constant when the sample was thicker than about 4 ML. When the coverage reached 7 ML, the frictional coefficient was close to zero. In wear experiments, 2-ML graphene exhibited better wear resistance than the 4-ML sample and had no dependence on directional friction. We also measured the adhesion force of samples containing different numbers of layers of graphene and the mica surface, and found that substrate adhesion is not the main reason for the wear resistance properties of 2-ML graphene. Compared with single-layer graphene, the low friction coefficient of few-layer graphene makes it promising for application in areas such as data storage devices, nanoelectromechanical systems, and anti-wear coatings.
-
-
-
[1]
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[2]
(2) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K.S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109
-
[3]
(3) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan,D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902.doi: 10.1021/nl0731872
-
[4]
(4) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.doi: 10.1038/nmat1849
-
[5]
(5) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
-
[6]
(6) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Katsnelson, M. I.; Gri rieva, I. V.; Dubonos, S. V.; Firsov, A.A. Nature 2005, 438, 197. doi: 10.1038/nature04233
-
[7]
(7) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80 (6), 1339. doi: 10.1021/ja01539a017
-
[8]
(8) Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A.R. Nano Lett. 2009, 9 (10), 3460. doi: 10.1021/nl9016623
-
[9]
(9) Renia, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.;Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9 (1), 30.doi: 10.1021/nl801827v
-
[10]
(10) Obraztsov, A. N. Nat. Nanotechnol. 2009, 4, 212. doi: 10.1038/nnano.2009.67
-
[11]
(11) Berger, C.; Song, Z.; Li, X.;Wu, X.; Brown, N.; Naud, C.;Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.;First, P. N.; de Heer,W. A. Science 2006, 312, 1191.doi: 10.1126/science.1125925
-
[12]
(12) Donnet, C., Erdemir, A. Surf. Coat. Tech. 2004, 180-181, 76.
-
[13]
(13) Lee, C.; Li, Q.; Kalb,W.; Liu, X. Z.; Berger, H.; Carpick, R.W.;Hone, J. Science 2010, 328, 76. doi: 10.1126/science.1184167
-
[14]
(14) Filleter, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.;Emtsev, K. V.; Seyller, T.; Horn, K.; Bennewitz, R. Phys. Rev. Lett. 2009, 102, 086102. doi: 10.1103/PhysRevLett.102.086102
-
[15]
(15) Kim, K. S.; Lee, H. J.; Lee, C.; Lee, S. K.; Jang, H.; Ahn, J. H.;Kim, J. H.; Lee, H. J. ACS Nano 2011, 5, 5107. doi: 10.1021/nn2011865
-
[16]
(16) Shin, Y. J.; Stromberg, R.; Nay, R.; Huang, H.;Wee, A. T. S.;Yang, H.; Bhatia, C. S. Carbon 2011, 49, 4070. doi: 10.1016/j.carbon.2011.05.046
-
[17]
(17) Lin, L. Y.; Kim, D. E.; Kim,W. K.; Jun, S. C. Surf. Coat. Tech.2011, 205, 4864. doi: 10.1016/j.surfcoat.2011.04.092
-
[18]
(18) Sandoz-Rosado, E. J.; Tertuliano, O. A.; Terrell, E. J. Carbon2012, 50, 4078. doi: 10.1016/j.carbon.2012.04.055
-
[19]
(19) Marchetto, D.; Held, C.; Hausen, F.;Wählisch, F.; Dienwiebel,M.; Bennewitz, R. Tribol. Lett. 2012, 48, 77. doi: 10.1007/s11249-012-9945-4
-
[20]
(20) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri,M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth,S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401
-
[21]
(21) Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G.W.; Heinz, T. F.Nature 2009, 462, 339. doi: 10.1038/nature08569
-
[22]
(22) Li, Q. Y.; Lee, C. G.; Carpick, R.W.; Hone, J. Phys. Status Solidi B 2010, 247, 2909. doi: 10.1002/pssb.v247.11/12
-
[23]
(23) Du, X. Q.; Li, H. Q.; Zhu, Q. R.; Zou, Z. Q.; Liang, Q. Acta Phys. -Chim. Sin. 2011, 27 (10), 2457. [杜晓青, 李慧琴,朱齐荣, 邹志强, 梁齐. 物理化学学报, 2011, 27 (10), 2457.]doi: 10.3866/PKU.WHXB20111010
-
[24]
(24) Liang, Q.; Li, H. N.; Xu, Y. B.; Xiao, X. D. J. Phys. Chem. B2006, 110, 403. doi: 10.1021/jp054939o
-
[25]
(25) Shin, Y. J.;Wang, Y.; Huang, H.; Kalon, G.;Wee, A. T. S.; Shen,Z. X.; Bhatia, C. S.; Yang, H. Langmuir 2010, 26 (6), 3798.doi: 10.1021/la100231u
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[3]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[4]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[5]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[6]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[7]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[10]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[11]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[12]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[13]
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
-
[14]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[15]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[16]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[17]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[18]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[19]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[20]
Xianfei Chen , Wentao Zhang , Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112
-
[1]
Metrics
- PDF Downloads(1081)
- Abstract views(1466)
- HTML views(96)