Citation: WANG Xue-Bao, LI Jin-Qing, LUO Yun-Jun. Effect of Drying Methods on the Structure and Thermal Decomposition Behavior of Ammonium Perchlorate/Graphene Composites[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2079-2086. doi: 10.3866/PKU.WHXB201305021
-
Graphene hydrogels were prepared by the sol-gel method, and then used to prepare ammonium perchlorate (AP)/graphene composites by the incorporation of AP. The composites were dried naturally in air, freeze-dried, or dried with supercritical CO2. Scanning electron microscopy (SEM), elemental analyses (EA), and X-ray diffraction (XRD) were used to characterize the structure of the AP/graphene composites dried using different methods. Furthermore, the thermal decomposition behavior of the AP/graphene composites was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis/infrared spectroscopy (TG-FTIR). Drying method had an obvious influence on the morphology of the AP/graphene composites; only the AP/graphene composites dried with supercritical CO2 showed similar three-dimensional networks and porous structure to graphene aerogels. Elemental analyses revealed that the AP contents in the AP/graphene composites prepared by drying naturally, freeze-drying, and supercritical CO2 drying were 89.97%, 92.41%, and 94.40%, respectively. XRD results showed that AP was dispersed homogeneously on the nanoscale in the AP/graphene composites dried with supercritical CO2 and the average particle diameter of AP was about 69 nm. DSC and TG-FTIR analyses indicated that graphene could promote the thermal decomposition of AP, particularly for the sample dried with supercritical CO2. Independent of drying method, the low-temperature decomposition of the as-prepared AP/graphene composites was not observed and the high-temperature decomposition was accelerated. Compared to the other two drying methods, graphene in the AP/graphene composites dried with supercritical CO2 showed most obvious promoting effects. The high-temperature decomposition temperature of the AP/graphene composites dried with supercritical CO2 decreased by 83.7 ℃ compared with that of pure AP, and the total heat release reached 2110 J·g-1. Moreover, graphene also took part in the oxidation reactions with oxidizing products, which was confirmed by the generation of CO2.
-
-
[1]
(1) Zhou, L. M.; Liu, H. Y.; Li, F. S. Acta Phys. -Chim. Sin. 2006,22 (5), 627. [周龙梅, 刘宏英, 李凤生. 物理化学学报, 2006,22 (5), 627.] doi: 10.3866/PKU.WHXB20060521
-
[2]
(2) Liu, H. B.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Sun, C. B.; Li, X. F.;Wu, H. Y. Mater. Lett. 2010, 64, 1698. doi: 10.1016/j.matlet.2010.04.061
-
[3]
(3) Liu, L. L.; Li, F. S.; Tan, L. H.; Min, L.; Yi, Y. Propellants Explos. Pyrotech. 2004, 29, 34.
-
[4]
(4) Kapoor, I. P. S.; Srivastava, P.; Singh, G. Propellants Explos. Pyrotech. 2009, 34, 351. doi: 10.1002/prep.v34:4
-
[5]
(5) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28 (2), 297. [罗小林,韩银凤, 杨德锁,陈亚芍. 物理化学学报, 2012, 28 (2), 297.] doi: 10.3866/PKU.WHXB201112012
-
[6]
(6) Chandru, R. A.; Patra, S.; Oommen, C.; Munichandraiah, N.;Raghunandan, B. N. J. Mater. Chem. 2012, 22, 6536. doi: 10.1039/c2jm16169a
-
[7]
(7) Li, N.; Cao, M. H.;Wu, Q. Y.; Hu, C. W. CrystEngComm 2012,14, 428. doi: 10.1039/c1ce05858d
-
[8]
(8) Chaturvedi, S.; Dave, P. N. J. Exp. Nanosci. 2012, 7 (2), 205.doi: 10.1080/17458080.2010.517571
-
[9]
(9) Han, X.; Sun, Y. L.; Wang, T. F.; Lin, Z. K.; Li, S. F.; Zhao, F.Q.; Liu, Z. R.; Yi, J. H.; Ren, X. E. J. Therm. Anal. Calorim.2008, 91, 551. doi: 10.1007/s10973-007-8290-6
-
[10]
(10) Reshmi, S.; Catherine, K. B.; Nair, C. P. R. Int. J. Nanotechnol.2011, 8 (10-12), 979.
-
[11]
(11) Compton, O. C.; Nguyen, S. T. Small 2010, 6, 711. doi: 10.1002/smll.v6:6
-
[12]
(12) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
-
[13]
(13) Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S.Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
-
[14]
(14) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol.2008, 3 (8), 491. doi: 10.1038/nnano.2008.199
-
[15]
(15) Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321,385. doi: 10.1126/science.1157996
-
[16]
(16) Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3),902. doi: 10.1021/nl0731872
-
[17]
(17) Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W.C.; Liu, B. J. Mater. Chem. 2011, 21, 6494. doi: 10.1039/c1jm10239g
-
[18]
(18) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4 (7), 4324. doi: 10.1021/nn101187z
-
[19]
(19) Chen, W. F.; Yan, L. F. Nanoscale 2011, 3, 3132. doi: 10.1039/c1nr10355e
-
[20]
(20) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
-
[21]
(21) Boldyrev, V. V. Thermochim. Acta 2006, 443, 1. doi: 10.1016/j.tca.2005.11.038
-
[22]
(22) Fan, X. Z.; Li, J. Z.; Fu, X. L.; Wang, H. Acta Chim. Sin. 2009,67 (1), 39. [樊学忠,李吉祯, 付小龙, 王晗. 化学学报,2009, 67 (1), 39.]
-
[23]
(23) Li, N.; Geng, Z. F.; Cao, M. H.; Ren, L.; Zhao, X. Y.; Liu, B.;Tian, Y.; Hu, C. W. Carbon 2013, 54, 124. doi: 10.1016/j.carbon.2012.11.009
-
[24]
(24) Lu, M.; Lü, C. X. Journal of Nanjing University of Science and Technology 2002, 26, 72. [陆明, 吕春绪. 南京理工大学学报, 2002, 26, 72.]
-
[25]
(25) Cooper, P. W. Explosives Engineering;Wiley-VCH:Albuquerque NM, 1996; pp 24-26.
-
[1]
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[4]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[7]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[8]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[9]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[10]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[11]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[12]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[13]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[14]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[15]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[16]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[17]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[18]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[19]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[20]
Jihua Deng , Xinshi Wu , Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046
-
[1]
Metrics
- PDF Downloads(859)
- Abstract views(1140)
- HTML views(48)